The Handbook of
OCULAR DISEASE
MANAGEMENT
18TH EDITION

Joseph W. Sowka, OD
Andrew S. Gurwood, OD
Alan G. Kabat, OD

Eyelids and Adnexa, PAGE 09
Conjunctiva and Sclera, PAGE 24
Corneal Disease, PAGE 35
Uvea and Glaucoma, PAGE 49
Vitreous and Retina, PAGE 66
Neuro-Ophthalmic Disease, PAGE 79

Supplement to
www.reviewofoptometry.com

Dr. Sowka Dr. Gurwood Dr. Kabat
INDICATIONS AND USAGE

ZYLET® (loteprednol etabonate 0.5% and tobramycin 0.3% ophthalmic suspension) is a topical anti-infective and corticosteroid combination for steroid-responsive inflammatory ocular conditions for which a corticosteroid is indicated and where superficial bacterial ocular infection or a risk of bacterial ocular infection exists.

Please see additional Indications and Usage information on adjacent page, including list of indicated organisms.
INDICATIONS AND USAGE (continued)

Ocular steroids are indicated in inflammatory conditions of the palpebral and bulbar conjunctiva, cornea and anterior segment of the globe such as allergic conjunctivitis, acne rosacea, superficial punctate keratitis, herpes zoster keratitis, iritis, cyclitis, and where the inherent risk of steroid use in certain infective conjunctivitides is accepted to obtain a diminution in edema and inflammation. They are also indicated in chronic anterior uveitis and corneal injury from chemical, radiation or thermal burns, or penetration of foreign bodies.

The use of a combination drug with an anti-infective component is indicated where the risk of superficial ocular infection is high or where there is an expectation that potentially dangerous numbers of bacteria will be present in the eye.

The particular anti-infective drug in this product (tobramycin) is active against the following common bacterial eye pathogens: Staphylococci, including S. aureus and S. epidermidis (coagulase-positive and coagulase-negative), including penicillin-resistant strains. Streptococci, including some of the Group A-beta-hemolytic species, some nonhemolytic species, and some Streptococcus pneumoniae, Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae, Enterobacter aerogenes, Proteus mirabilis, Morganella morgani, most Proteus vulgaris strains, Haemophilus influenzae, and H. aegyptius, Moraxella lacunata, Acinetobacter calcoaceticus and some Neisseria species.

IMPORTANT SAFETY INFORMATION

- ZYLET® is contraindicated in most viral diseases of the cornea and conjunctiva including epithelial herpes simplex keratitis (dendritic keratitis), vaccinia, and varicella, and also in mycobacterial infection of the eye and fungal diseases of ocular structures.
- Prolonged use of corticosteroids may result in glaucoma with damage to the optic nerve, defects in visual acuity and fields of vision. Steroids should be used with caution in the presence of glaucoma. If this product is used for 10 days or longer, intraocular pressure should be monitored.
- Use of corticosteroids may result in posterior subcapsular cataract formation.
- The use of steroids after cataract surgery may delay healing and increase the incidence of bleb formation. In those diseases causing thinning of the cornea or sclera, perforations have been known to occur with the use of topical steroids. The initial prescription and renewal of the medication order should be made by a physician only after examination of the patient with the aid of magnification such as a slit lamp biomicroscopy and, where appropriate, fluorescein staining.
- Prolonged use of corticosteroids may suppress the host response and thus increase the hazard of secondary ocular infections. In acute purulent conditions, steroids may mask infection or enhance existing infections. If signs and symptoms fail to improve after 2 days, the patient should be re-evaluated.
- Employment of corticosteroid medication in the treatment of patients with a history of herpes simplex requires great caution. Use of ocular steroids may prolong the course and exacerbate the severity of many viral infections of the eye (including herpes simplex).
- Fungal infections of the cornea are particularly prone to develop coincidentally with long-term local steroid application. Fungus invasion must be considered in any persistent corneal ulceration where a steroid has been used or is in use.
- Most common adverse reactions reported in patients were injection and superficial punctate keratitis, increased intraocular pressure, burning and stinging upon instillation.

Please see Brief Summary of Prescribing Information on the following page.

With a one-two combo in the treatment of blepharitis and other steroid-responsive ocular conditions with the risk of bacterial infection, PRESCRIBE ZYLET® TODAY.

Zylet®
loteprednol etabonate 0.5% and tobramycin 0.3% ophthalmic suspension

Bausch + Lomb

©/™ are trademarks of Bausch & Lomb Incorporated or its affiliates.
© 2015 Bausch & Lomb Incorporated. All rights reserved. Printed in USA. US/ZYL/15/0013a
BRIEF SUMMARY OF PRESCRIBING INFORMATION
This Brief Summary does not include all the information needed to use Zylet safely and effectively. See full prescribing information for Zylet.

Zylet (loteprednol etabonate 0.5% and tobramycin 0.3% ophthalmic suspension)
Initial U.S. Approval: 2004

DOSAGE AND ADMINISTRATION
2.1 Recommended Dosing
Apply one or two drops of Zylet to the conjunctival sac of the affected eye every four to six hours. During the initial 24 to 48 hours, the dosing may be increased, to every one to two hours. Frequency may be decreased gradually as warranted by improvement in clinical signs. Care should be taken not to discontinue therapy prematurely.

2.2 Prescription Guideline
Not more than 20 ml should be prescribed initially and the prescription should not be refilled without further evaluation [see Warnings and Precautions (5.3)].

CONTRAINDICATIONS
5.1 Intraocular Pressure (IOP) Increase
Prolonged use of corticosteroids may result in glaucoma with damage to the optic nerve, defects in visual acuity and fields of vision. Steroids should be used with caution in the presence of glaucoma. If this product is used for 10 days or longer, intraocular pressure should be monitored.

5.2 Cataracts
Use of corticosteroids may result in posterior subcapsular cataract formation.

5.3 Delayed Healing
The use of corticosteroids after cataract surgery may delay healing and increase the incidence of bleb formation. In these diseases causing thinning of the cornea or sclera, perforations have been known to occur with the use of topical steroids. The initial prescription and renewal of the medication order should be made by a physician only after examination of the patient with the aid of magnification such as a slit lamp biomicroscopy and, where appropriate, fluorescein staining.

5.4 Bacterial Infections
Prolonged use of corticosteroids may suppress the host response and thus increase the hazard of secondary ocular infections. In acute purulent conditions of the eye, steroids may mask infection or enhance existing infection. If signs and symptoms fail to improve after 2 days, the patient should be re-evaluated.

5.5 Viral Infections
Employment of a corticosteroid medication in the treatment of patients with a history of herpes simplex requires great caution. Use of ocular steroids may prolong the course and may exacerbate the severity of many viral infections of the eye (including herpes simplex).

5.6 Fungal Infections
Fungal infections of the cornea are particularly prone to develop coincidentally with long-term local steroid application. Fungus invasion must be considered in any persistent corneal ulceration where a steroid has been used or is in use. Fungal cultures should be taken when appropriate.

5.7 Aminoglycoside Hypersensitivity
Sensitivity to topically applied aminoglycosides may occur in some patients. If hypersensitivity develops with this product, discontinue use and institute appropriate therapy.

ADVERSE REACTIONS
Adverse reactions have occurred with steroid/anti-infective combination drugs which can be attributed to the steroid component, the anti-infective component, or the combination. Zylet:

In a 42 day safety study comparing Zylet to placebo, ocular adverse reactions included injection (approximately 20%) and superficial punctate keratitis (approximately 15%). Increased localized ocular toxicity, including lid itching and swelling and conjunctival erythema. These reactions occur in less than 4% of patients. Similar reactions may occur with the topical use of other aminoglycoside antibiotics.

Secondary Infection:
The development of secondary infection has occurred after use of combinations containing steroids and antimicrobials. Fungal infections of the cornea are particularly prone to develop coincidentally with long-term applications of steroids. The possibility of fungal invasion must be considered in any persistent corneal ulceration where steroid treatment has been used. Secondary bacterial ocular infection following suppression of host responses also occurs.

USE IN SPECIFIC POPULATIONS
8.1 Pregnancy
Teratogenic effects: Pregnancy Category C. Loteprednol etabonate has been shown to be embryotoxic (delayed ossification) and teratogenic (increased incidence of mingeole, abnormal left common carotid artery, and limb defects) when administered orally to rabbits during organogenesis at a dose of 3 mg/kg/day (35 times the maximum daily clinical dose), a dose which caused no maternal toxicity. The no-observed-effect-level (NOEL) for these effects was 0.5 mg/kg/day (6 times the maximum daily clinical dose).

Ocular toxicity of rabbits during organogenesis resulted in teratogenicity (absent innominate artery at ≥5 mg/kg/day doses, and cleft palate and umbilical hernia at ≥50 mg/kg/day) and embryotoxicity (increased post-implantation losses at 100 mg/kg/day and decreased fetal body weight and skeletal ossification at ≥50 mg/kg/day). Treatment of rabbits at 0.5 mg/kg/day (6 times the maximum daily clinical dose) during organogenesis did not result in any reproductive toxicity. Loteprednol etabonate was maternally toxic (significantly reduced body weight gain during treatment) when administered to pregnant rats during organogenesis at doses of ≥5 mg/kg/day.

Oral exposure of female rats to 50 mg/kg/day of loteprednol etabonate from the start of the fetal period through the end of lactation, a maternally toxic treatment regimen (significantly decreased body weight gain), gave rise to decreased growth and survival and retarded development in the offspring during lactation: the NOEL for these effects was 5 mg/kg/day. Loteprednol etabonate had no effect on the duration of gestation or parturition when administered orally to pregnant rats at doses up to 50 mg/kg/day during the fetal period.

Reproductive studies have been performed in rats and rabbits with tobramycin at doses up to 100 mg/kg/day parenterally and have revealed no evidence of impaired fertility or harm to the fetus. There are no adequate and well-controlled studies in pregnant women. Zylet should be used during pregnancy only if the potential benefit justifies the potential risk to the fetus.

8.3 Nursing Mothers
It is not known whether topical ophthalmic administration of corticosteroids could result in sufficient systemic absorption to produce detectable quantities in human milk. Steroid-containing ophthalmic solutions that appear in human milk could suppress growth, interfere with endogenous corticosteroid production, or cause other untoward effects. Caution should be exercised when Zylet is administered to a nursing woman.

8.4 Pediatric Use
Two trials were conducted to evaluate the safety and efficacy of Zylet® (loteprednol etabonate and tobramycin ophthalmic suspension) in pediatric subjects age zero to six years; one was in subjects with lid inflammation and the other was in subjects with blepharocconjunctivitis.

In the lid inflammation trial, Zylet with warm compresses did not demonstrate efficacy compared to vehicle with warm compresses. Patients received warm compress lid treatment plus Zylet or vehicle for 14 days. The majority of patients in both treatment groups showed reduced lid inflammation. In the blepharocconjunctivitis trial, Zylet did not demonstrate efficacy compared to vehicle, loteprednol etabonate ophthalmic suspension, or tobramycin ophthalmic solution. There was no difference between treatment groups in mean change from baseline blepharocconjunctivitis score at Day 15.

There were no differences in safety assessments between the treatment groups in either trial.

8.5 Geriatric Use
No overall differences in safety and effectiveness have been observed between elderly and younger patients.

NONCLINICAL TOXICOLOGY
13.1 Carcinogenesis, Mutagenesis, Impairment of Fertility
Long-term animal studies have not been conducted to evaluate the carcinogenic potential of loteprednol etabonate or tobramycin.

Loteprednol etabonate was not genotoxic in vitro to the Ames test, the mouse lymphoma TK assay, a chromosome aberration test in human lymphocytes, or in an in vivo mouse micronucleus assay.

Oral treatment of male and female rats at 50 mg/kg/day and 25 mg/kg/day of loteprednol etabonate, respectively, (600 and 250 times the maximum daily clinical dose, respectively) prior to and during mating did not impair fertility in either gender. No impairment of fertility was noted in studies of subcutaneous tobramycin in rats at 100 mg/kg/day (1700 times the maximum daily clinical dose).

PATIENT COUNSELING INFORMATION
This product is sterile when packaged. Patients should be advised not to allow the dropper tip to touch any surface, as this may contaminate the suspension. If pain develops, stop use.

Manufacturer Information
BAUSCH & LOMB INCORPORATED
TAMPA, FLORIDA 33637 USA
©Bausch & Lomb Incorporated

Zylet is a registered trademark of Bausch & Lomb Incorporated.

Based on 9007705-9004405
Revised 08/2013
US/ZYL/15/0014
TABLE OF CONTENTS

EYELIDS AND ADNEXA
- Acquired Ectropion .. 9
- Ocular Rosacea ... 11
- Neurofibromatosis .. 13
- Verruca and Papilloma ... 16
- Trichiasis ... 18

CONJUNCTIVA AND SCLERA
- Conjunctivochalasis .. 24
- Conjunctival Intraepithelial Neoplasia 26
- Conjunctival Cysts .. 28
- Mucus Fishing Syndrome .. 29
- Giant Papillary Conjunctivitis ... 31

CORNEA
- Acanthamoeba Keratitis .. 35
- Toxic Keratoconjunctivitis .. 37
- Vortex Keratopathy and Hurricane Keratopathy 40
- Keratoconus and Corneal Hydrops 42
- Terrien’s Marginal Degeneration 45

UVEA AND GLAUCOMA
- Phacomorphic Glaucoma.. 49
- Phacolytic Glaucoma .. 53
- Primary Chronic Angle Closure Glaucoma 55
- Uveitic Glaucoma .. 57
- Choroidal Rupture .. 60

VITREOUS AND RETINA
- Angioid Streaks .. 66
- Retinopathy of Prematurity ... 67
- Solar Retinopathy .. 70
- Idiopathic Macular Telangiectasis 72
- Retinal Artery Occlusion .. 75

NEURO-OPHTHALMIC DISEASE
- Ocular Myasthenia Gravis .. 79
- Cranial Nerve III Palsy .. 81
- Cranial Nerve IV Palsy ... 84
- Cranial Nerve VI Palsy ... 87

This publication addresses the management of various conditions with support from the best available peer-reviewed literature. This is done to provide the most up-to-date management of patients with various conditions and to indicate when patient referral is appropriate. In many cases, the management may necessitate treatment from a specialist or subspecialist. This manuscript does not recommend that any doctor practice beyond the scope of licensure or level of personal comfort. It is up to the reader to understand the scope of state licensure and practice only within those guidelines.

A Peer-Reviewed Supplement

The articles in this supplement were subjected to *Review of Optometry*’s peer-review process. The magazine employs a double-blind review system for clinical manuscripts in which experts in each subject review the manuscript before publication. This supplement was edited by the *Review of Optometry* staff.

©2016. Reproducing editorial content and photographs requires permission from *Review of Optometry*®.
IN MEMORIAM: LARRY ALEXANDER, OD

Larry Alexander was our friend. We could call him any time and ask a personal or professional question. He never failed to pick up the phone, not even in the middle of a busy day. He was a giant in the profession of optometry, not because of the committees he served on or the papers he wrote or the books he authored, but because he was revered by everybody who knew him. Like Muhammad Ali, Michael Jordan and Wayne Gretzky, he brought out the best in the people he touched and always found a way to make those who were around him better—better doctors and better human beings.

We met Larry early in our careers when we began lecturing at conferences. Larry was a legend then and his textbook, Primary Care of the Posterior Segment, was the quintessential optometric reference on the subject. It had both color and black-and-white photographs, along with magnificent schematic illustrations that clearly depicted the pathophysiology of each entity. It was well written, easy to understand and well referenced, permitting the reader to return to the original references if they wanted additional in-depth information.

Larry was in the audience but didn’t introduce himself until after the program. He was not critical of us novices, but offered compliments and advice on how the talks could be made stronger, and volunteered to assist. He even offered access to his material. Larry proffered his business card and joked that it was like the “Bat Signal”—when called, he would help. He always did.

Larry was fun to be with. He had a great sense of humor and never took himself too seriously. He didn’t suffer fools gladly either. He was forever humble. At a conference just last year, we were sitting together when Larry turned to us during a break and announced that he was going to get refreshments, and asked if he could bring us anything. Imagine—we were forever students in Larry’s shadow, and yet, he was willing to wait on us. He was, simply put, the nicest man in the world.

Larry was a passionate guy who always took a stand. He was a participant, but you knew how Larry felt about what was being discussed. And he wasn’t easily manipulated. He never shied away from taking the floor and always had a lot to say. Larry might not have been the best, but the best asked him the questions.

When Larry died, we watched as every major player in the profession expressed sadness, grief, disbelief and soul-searching remorse. Dr. Larry Alexander made us all better practitioners, and we are all better people for knowing him. Don McLean wrote the song “American Pie” to celebrate the life of Buddy Holly, proclaiming his death “the day the music died.” To us, Larry Alexander’s passing was the day the ophthalmoscope died. We lost a dear friend, colleague and mentor—a true original in the optometric world.

Joseph W. Sowka, OD, FAAO, Dipl., is a professor of optometry, program supervisor of the Primary Care with Emphasis in Ocular Disease Residency, instructor in glaucoma and retinal disease, and Chair of the Clinical Sciences Department at Nova Southeastern University College of Optometry. At the college’s Eye Care Institute, he is the director of the Glaucoma Service and chief of the Advanced Care Service. Dr. Sowka is a founding member of the Optometric Glaucoma Society, the Optometric Retina Society and the Neuro-ophthalmic Disorders in Optometry Special Interest Group. He is currently the Chair of the Optometric Glaucoma Society Foundation. He is an American Academy of Optometry Diplomate in glaucoma. Dr. Sowka lectures nationally and internationally on topics in ocular disease. He can be reached at (954) 262-1472 or at jsowka@nova.edu.

Andrew S. Gurwood, OD, is a professor of clinical sciences, an attending optometric physician and co-chief in Suite 3 of the Eye Institute of the Pennsylvania College of Optometry at Salus University and a member of the clinical staff of Albert Einstein Medical Center Department of Ophthalmology. He is a founding member of the Optometric Retina Society and a member of the Optometric Glaucoma Society. Dr. Gurwood has lectured and published nationally and internationally on a wide range of subjects in ocular disease. He can be reached at agurwood@salus.edu.

Alan G. Kabat, OD, FAAO, is a professor at the Southern College of Optometry in Memphis, Tenn., where he teaches courses in ocular disease and clinical procedures. He is an attending physician at The Eye Center as well as clinical care consultant at TearWell Advanced Dry Eye Treatment Center. A recognized expert in the area of ocular surface disease, Dr. Kabat is a founding member of both the Optometric Dry Eye Society and the Ocular Surface Society of Optometry. He is also associate clinical editor of Review of Optometry. He can be reached at (901) 252-3691 or at alan.kabat@alankabat.com.

The authors have no direct financial interest in any product mentioned in this publication.
INDICATIONS AND USAGE

PROLENSA® (bromfenac ophthalmic solution) 0.07% is a nonsteroidal anti-inflammatory drug (NSAID) indicated for the treatment of postoperative inflammation and reduction of ocular pain in patients who have undergone cataract surgery.

IMPORTANT SAFETY INFORMATION ABOUT PROLENSA®

• PROLENSA® contains sodium sulfite, a sulfite that may cause allergic type reactions including anaphylactic symptoms and life-threatening or less severe asthmatic episodes in certain susceptible people. The overall prevalence of sulfite sensitivity in the general population is unknown and probably low. Sulfite sensitivity is seen more frequently in asthmatic than in non-asthmatic people.

• All topical nonsteroidal anti-inflammatory drugs (NSAIDs), including bromfenac, may slow or delay healing. Concomitant use of topical NSAIDs and topical steroids may increase the potential for healing problems.

• There is the potential for cross-sensitivity to acetylsalicylic acid, phenylacetic acid derivatives, and other NSAIDs, including bromfenac. Use with caution in patients who have previously exhibited sensitivities to these drugs.

• There have been reports that ocularily applied NSAIDs may cause increased bleeding of ocular tissues (including hyphemas) in conjunction with ocular surgery. Use with caution in patients with known bleeding tendencies or who are receiving other medications which may prolong bleeding time.

• Use of topical NSAIDs may result in keratitis. Patients with evidence of corneal epithelial breakdown should immediately discontinue use of topical NSAIDs, including bromfenac, and should be closely monitored for corneal health. Patients with complicated ocular surgeries, corneal denervation, corneal epithelial defects, diabetes mellitus, ocular surface diseases (e.g., dry eye syndrome), rheumatoid arthritis, or repeat ocular surgeries within a short period of time may be at increased risk for corneal adverse events which may become sight threatening. Topical NSAIDs should be used with caution in these patients. Post-marketing experience with topical NSAIDs suggests that use more than 24 hours prior to surgery or use beyond 14 days post-surgery may increase patient risk for the occurrence and severity of corneal adverse events.

• PROLENSA® should not be instilled while wearing contact lenses. The preservative in PROLENSA®, benzalkonium chloride, may be absorbed by soft contact lenses. Lenses may be reinserted after 10 minutes following administration of PROLENSA®.

• The most commonly reported adverse reactions in 3%-8% of patients were anterior chamber inflammation, foreign body sensation, eye pain, photophobia, and blurred vision.

Please see brief summary of full Prescribing Information for PROLENSA® on adjacent page.

PROLENSA® is a registered trademark of Bausch & Lomb Incorporated or its affiliates. © Bausch & Lomb Incorporated. All rights reserved. Printed in USA, PRA.0188.USA.15

PROLENSA® Effect
POWERED FOR PENETRATION
Advanced Formulation to Facilitate Corneal Penetration

PROLENSA® delivers potency and corneal penetration with QD dosing at a low concentration.

The PROLENSA® Effect
POWERED FOR PENETRATION
Advanced Formulation to Facilitate Corneal Penetration

PROLENSA® delivers potency and corneal penetration with QD dosing at a low concentration.
INDICATIONS AND USAGE
PROLENSA® (bromfenac ophthalmic solution) 0.07% is indicated for the treatment of postoperative inflammation and reduction of ocular pain in patients who have undergone cataract surgery.

DOSE AND ADMINISTRATION
Recommended Dosing
One drop of PROLENSA® ophthalmic solution should be applied to the affected eye once daily beginning 1 day prior to cataract surgery, continued on the day of surgery, and through the first 14 days of the postoperative period.

Use with Other Topical Ophthalmic Medications
PROLENSA ophthalmic solution may be administered in conjunction with other topical ophthalmic medications such as alpha-agonists, beta-blockers, carbonic anhydrase inhibitors, cycloplegics, and mydriatics. Drops should be administered at least 5 minutes apart.

CONTRAINDICATIONS
None

WARNINGS AND PRECAUTIONS
Sulfite Allergic Reactions
Contains sodium sulfite, a sulfite that may cause allergic-type reactions including anaphylactic symptoms and life-threatening or less severe asthmatic episodes in certain susceptible people. The overall prevalence of sulfite sensitivity in the general population is unknown and probably low. Sulfite sensitivity is seen more frequently in asthmatic than in non-asthmatic people.

Slow or Delayed Healing
All topical nonsteroidal anti-inflammatory drugs (NSAIDs), including bromfenac, may slow or delay healing. Topical corticosteroids are also known to slow or delay healing. Concomitant use of topical NSAIDs and topical steroids may increase the potential for healing problems.

Potential for Cross-Sensitivity
There is the potential for cross-sensitivity to acetylsalicylic acid, phenylacetic acid derivatives, and other NSAIDs, including bromfenac. Therefore, caution should be used when treating individuals who have previously exhibited sensitivities to these drugs.

Increased Bleeding Time
With some NSAIDs, including bromfenac, there exists the potential for increased bleeding time due to interference with platelet aggregation. There have been reports that ocularly applied NSAIDs may cause increased bleeding of ocular tissues (including hyphemas) in conjunction with conjunctival surgery.

Keratitis and Corneal Reactions
Use of topical NSAIDs may result in keratitis. In some susceptible patients, continued use of topical NSAIDs may result in epithelial breakdown, corneal thinning, corneal erosion, corneal ulceration or corneal perforation. These events may be sight threatening. Patients with evidence of corneal epithelial breakdown should immediately discontinue use of topical NSAIDs, including bromfenac, and should be closely monitored for corneal health.

Contact Lens Wear
PROLENSA should not be instilled while wearing contact lenses. Remove contact lenses prior to instillation of PROLENSA. The preservative in PROLENSA, benzalkonium chloride, may be absorbed by soft contact lenses. Lenses may be reinserted after 10 minutes following administration of PROLENSA.

ADVERSE REACTIONS
Clinical Trial Experience
Because clinical trials are conducted under widely varying conditions, adverse reaction rates observed in the clinical trials of a drug cannot be directly compared to rates in the clinical trials of another drug and may not reflect the rates observed in clinical practice.

The most commonly reported adverse reactions following use of PROLENSA® ophthalmic solution following cataract surgery include:
- anterior chamber inflammation, foreign body sensation, eye pain, and blepharoconjunctivitis, which are observed in 8% of patients.

USE IN SPECIFIC POPULATIONS
Pregnancy
Treatment of rats at oral doses up to 0.9 mg/kg/day (systemic exposure 90 times the systemic exposure predicted from the recommended human ophthalmic dose [RHOD] assuming the human systemic concentration is at the limit of quantification) and rabbits at oral doses up to 7.5 mg/kg/day (150 times the predicted human systemic exposure) produced no treatment-related malformations in reproduction studies. However, embryo-fetal lethality and maternal toxicity were produced in rats and rabbits at 0.9 mg/kg/day and 7.5 mg/kg/day, respectively. In rats, bromfenac treatment caused delayed parturition at 0.3 mg/kg/day (30 times the predicted human exposure), and caused dystocia, increased neonatal mortality and reduced postnatal growth at 0.9 mg/kg/day. There are no adequate and well-controlled studies in pregnant women. Because animal reproduction studies are not always predictive of human response, this drug should be used during pregnancy only if the potential benefit justifies the potential risk to the fetus.

Because of the known effects of prosta glandin biosynthesis-inhibiting drugs on the fetal cardiovascular system (closure of ductus arteriosus), the use of PROLENSA® ophthalmic solution during late pregnancy should be avoided.

Nursing Mothers
Caution should be exercised when PROLENSA is administered to a nursing woman.

Pediatric Use
There is no evidence that the efficacy or safety profiles for PROLENSA differ in patients 70 years of age and older compared to younger adult patients.

NONCLINICAL TOXICOLOGY
Carcinogenesis, Mutagenesis and Impairment of Fertility
Long-term carcinogenicity studies in rats and mice given oral doses of bromfenac up to 0.6 mg/kg/day (systemic exposure 30 times the systemic exposure predicted from the recommended human ophthalmic dose [RHOD] assuming the human systemic concentration is at the limit of quantification) and 5 mg/kg/day (340 times the predicted human systemic exposure), respectively, revealed no significant increases in tumor incidence. Bromfenac did not show mutagenic potential in various mutagenicity studies, including the reverse mutation, chromosomal aberration, and micronucleus tests.

Bromfenac did not impair fertility when administered orally to male and female rats at doses up to 0.9 mg/kg/day and 0.3 mg/kg/day, respectively (systemic exposure 90 and 30 times the predicted human exposure, respectively).

PATIENT COUNSELING INFORMATION
Slowed or Delayed Healing
Advise patients of the possibility that slow or delayed healing may occur while using NSAIDs.

Sterility of Dropper Tip
Advise patients to replace bottle cap after using and to not touch dropper tip to any surface, as this may contaminate the contents. Advise patients that a single bottle of PROLENSA® ophthalmic solution, use be treated only one eye.

Concomitant Use of Contact Lenses
Advise patients to remove contact lenses prior to instillation of PROLENSA. The preservative in PROLENSA, benzalkonium chloride, may be absorbed by soft contact lenses. Lenses may be reinserted after 10 minutes following administration of PROLENSA.

Concomitant Use of Ocular Therapy
If more than one topical ophthalmic medication is being used, the medicines should be administered at least 5 minutes apart.

Rx Only
Manufactured by: Bausch & Lomb Incorporated, Tampa, FL 33637
Under license from: Senju Pharmaceuticals Co., Ltd.
Osaka, Japan 541-0046

PROLENSA is a trademark of Bausch & Lomb Incorporated or its affiliates. © Bausch & Lomb Incorporated 9317600

US/PR/A/14/0024

2/16/16 10:38 AM
ACQUIRED ECTROPION

Signs and Symptoms
Ectropion represents a condition of eyelid malpositioning in which the lid margin rotates outward, away from the ocular surface.1,6 This phenomenon may occur unilaterally or bilaterally and may involve the upper or lower eyelids, although the lower lids are affected far more frequently.5

Clinically, patients will demonstrate exposure of the posterior lid margin and palpebral conjunctiva to a variable degree. Often, the condition is first noted to affect the nasal aspect of the lid, causing punctal ectropion; over time, the medial and, ultimately, the temporal aspect may turn outward as well. When inferior ectropion is encountered, the lower eyelid will be seen to droop, resulting in greater visibility of the inferior bulbar conjunctiva and sclera (sometimes referred to as “inferior scleral show”). The eyelids may not close fully during sleep or when blinking, a condition known clinically as lagophthalmos. Loss of lid/globe apposition also frequently results in epiphora, as normal tear clearance through the punctum and lacrimal canaliculus is hindered.2

The increased exposure of the ocular surface associated with ectropion may result in signs of conjunctival hyperemia and punctate keratopathy.1 Reported symptoms may include dryness, burning, foreign body sensation or nonspecific ocular irritation related to exposure keratopathy. Vision may be variably affected, depending upon the stability of the tear film at the time of examination, or the extent and location of corneal damage. Untreated, ectropion may instigate keratinization and thickening of the palpebral conjunctiva, leading to greater symptomology.

Pathophysiology
Acquired ectropion may result from any of four processes: involutional, cicatricial, mechanical or paralytic etiologies.

Involutional ectropion—sometimes referred to as senile ectropion—is generally associated with increasing age, and is considered the most common type of acquired ectropion.5 This condition affects the lower lids only, a result of gravity’s impact under the weight of the midfacial structures.6 Over time, structural changes—including dehiscence and disinsertion of the lower lid retractors, laxity of the medial and lateral canthal tendons, and atrophy or degeneration of the orbicularis oculi—cause the lower lid margin to lose its normal apposition to the globe and turn outward.5,7

Cicatricial ectropion may affect the upper or lower eyelids, and occurs as a result of improper healing following insult or inflammation. Causes may include: mechanical, chemical or thermal injury; toxic, infectious, infiltrative or autoimmune dermatopathies; or iatrogenic changes following excisional surgery or overly aggressive blepharoplasty.1,2,5,9 In each of these instances, a resulting vertical shortening of the anterior lamella (consisting of the skin and orbicularis portions of the eyelid) causes outward rotation of the lid margin.

Mechanical ectropion is encountered when a mass lesion, such as a large tumor or cyst, imparts its weight to the lower eyelid, causing it to droop and turn away from the globe.5,5,6 This may also occur with extreme cases of hemi-atid orbital fat in the lower lid.1

Finally, **paralytic ectropion** results from a loss of innervation by the facial nerve (cranial nerve VII), as may occur in cases of stroke, nerve damage due to surgery or trauma, compressive tumor or Bell’s palsy.1 Patients with paralytic ectropion typically manifest a concurrent ptosis of the upper brow and lid, drooping of the corner of the mouth and a relative loss of muscular control on the ipsilateral side.

Management
Appropriate management for acquired ectropion depends upon the underlying etiology as well as the severity of the condition. Since the potential exists for permanent ocular surface compromise, intervention must be active rather than passive. Supportive therapy with artificial tears and/or ointments can help temporarily mitigate the desiccative effects of exposure, as can the use of moist chamber spectacles. It may be particularly helpful to employ a bland ointment while sleeping, with or without a mask, patch or eyelid taping to keep the eyelid closed as much as possible.

Mild cases of involutional ectropion that do not warrant surgery (or cases in which patients are averse to surgery) may be managed with the use of adhesive strips to temporarily restore appropriate lid-globe apposition.10 Pre-sized Steri-Strip elastic skin closures (3M Healthcare) in the 50mm x 100mm size can be ideal for this purpose; alternatively, clear surgical tape such as Transpore or Nexcare (3M Healthcare) can be cut to size by the patient. The adhesive should be affixed about 5mm to 10mm below the midline of the lower eyelid and directed superotemporally, securing it to the zygomatic region.

Surgery remains the definitive treatment for involutional ectropion, although numerous procedures may be applicable. Cases of punctal ectro-
tightening of the affected eyelid.5,6 More pronounced involutional ectropion may require a subsequent or concomitant lateral tarsal strip procedure, which serves to overcome horizontal eyelid laxity.5,6,10 In this technique, a full-thickness wedge of eyelid tissue is dissected away from the lateral canthus, after which the canthal tendon is reattached to orbital periosteum, stretching the lower lid taut.3 If laxity persists at the nasal aspect of the lid, a medial canthal tendon plication procedure can further tighten the nasal aspect of the eyelid by anchoring the tendon to the anterior periosteum.12

Cicatricial ectropion often requires surgical intervention, though milder cases caused by toxicity or actinic changes may respond to local massage with a topical steroid preparation (e.g., hydrocortisone 1% cream twice daily for cases caused by toxicity or actinic damage).14 Ectropion associated with actinic skin dysplasia syndrome.5

Mechanical ectropion management is straightforward, involving surgical excision of the inciting mass lesion with the subsequent application of skin grafting as necessary.6,16 In cases of herniated orbital fat resulting in ectropion, lower lid blepharoplasty using a transconjunctival approach may improve both cosmesis and eyelid apposition.

Paralytic ectropion represents the one category that can demonstrate spontaneous recovery. Hence, the clinician should employ conservative therapy initially, monitoring for improvement. This is particularly true in cases attributable to Bell’s palsy, which typically resolves within three weeks of onset, regardless of treatment.17 Those cases that persist may be addressed using management strategies similar to those for involutional ectropion. Although lateral tarsal strip procedures are most common, periosteal flap canthoplasty has recently been used successfully to overcome horizontal eyelid laxity and elevate the lower eyelid in cases of paralytic ectropion.18

Clinical Pearls

- In contrast to acquired ectropion, congenital ectropion may be encountered at birth. This phenomenon is exceedingly rare and typically associated with other developmental anomalies such as euryblepharon, blepharoptosis, epicanthus inversus and blepharoophimosis syndrome.5

- Focused physical testing can aid in the diagnosis of ectropion. One such examination technique is the “snap-back” test. The patient is asked to look up slightly while the examiner pulls the lower eyelid inferiorly; if the eyelid fails to return to its normal anatomical position within one or two seconds prior to blinking, it is indicative of pathological laxity.19 Another diagnostic technique is the dislocation or distraction test. This is performed by grasping the lower eyelid and pulling it anteriorly away from the globe. If the lid can be pulled more than 7mm from the globe, it is again indicative of increased horizontal lid laxity and ectropion.19

- While involutional ectropion is the most common form of ectropion encountered clinically, physicians must be careful not to overlook cicatricial etiologies. Numerous dermatological conditions can lead to cicatricial ectropion, including actinic changes, chronic contact dermatitis, discoid lupus erythematosus, Stevens-Johnson syndrome, psoriatic arthritis, lymphoma, ichthyosis, herpes zoster ophthalmicus, pyoderma gangrenosum and others.2,6,14,15,20-24

- In cases of paralytic ectropion associated with Bell’s palsy, treatment with high-dose systemic corticosteroid therapy is indicated, and should be initiated within the first 72 hours after onset. Generally, a 10-day course of therapy is recommended, e.g., prednisone 60mg PO daily for five days, then tapered down by 10mg each day for another five days.17 Remember, too, that Bell’s palsy is a diagnosis of exclusion, and should only be entertained after other etiologies are effectively ruled out; these include stroke, demyelinating disease, parotid gland tumor, Lyme disease, Ramsay-Hunt syndrome, diabetes and trauma.

Ocular rosacea

Signs and Symptoms

Ocular rosacea is a common, chronic inflammatory centro-facial dermatosis.1-9 The condition affects approximately 16 million Americans, with up to 7% experiencing some form of ocular surface abnormality.9,10 It is characterized by facial dermatologic flushing, redness and dilated blood vessels (erythematotelangiectatic rosacea), pimples and pustules (papulopustular rosacea), and thickening of the skin (phymatous rosacea)—with these forms often occurring simultaneously, specifically around the nose and eyes.1,2

The ocular tissues and eyelids may become involved through simultaneous evolution of a related blepharoconjunctivitis (ocular rosacea).1-6 Thickening, with vascular changes of the skin around the affected areas, results from chronic, recurring or unmanaged disease leading to tissue enlargement (phyma).2 An example of this is the classic sign of chronic disease: the asymmetric and bulbous enlargement of the nose, known as rhinophyma (sometimes referred to in the medical community as “W.C. Fields nose”).1,2

Rosacea prevalence is highest (i.e., between 2.7% and 10%) in patients of Northern European or Celtic heritage.5,6 Individuals with fair skin seem to be more frequently affected, with the Asian and African races less so.3,5,6 Since there is a racial predilection, and because the condition is often present in multiple family members, a genetic component is suspected but, to date, has not been confirmed.5,7,8 The disease is more common among female patients, with a peak incidence between the ages of 30 and 50 years.6

Ocular signs and symptoms are consistent with seborrhoeic blepharitis: adnexal and lid skin redness with dermatologic dandruff and lid debris, crusting and matting of the cilia, foreign body sensation, ocular irritation, dryness, ocular burning, hordeolum formation, chalazion formation, injection of the conjunctiva with lacrimation and, in the worst cases, development of a lateral canthal fissure with resultant epiphora. Chronic inflammatory and mechanical vectors can compromise conjunctivo-ocular homeostasis, leading to: inferior punctate keratopathy, recurrent corneal epithelial defects, basement membrane pathology, the movement of white blood cells into the affected cornea, producing subepithelial infiltrates, keratolysis, and thinning or scarring; subclinical and clinical iritis, development of pannus, and, in extreme, unmanaged cases, fibrosis and symblepharon.5-10

Pathophysiology

Four distinct subtypes of rosacea have been recognized.1-11 The classifications are labeled by their characteristics: erythematotelangiectatic rosacea (exhibiting transient and non-transparent facial flushing with telangiectasia), papulopustular rosacea (inflammatory papules and pustules), phymatous rosacea (enlargement of the skin around the affected areas) and ocular rosacea.5-8

Although the exact pathogenesis of rosacea remains unknown, dysregulation of the innate immune system, overgrowth of skin organisms (bacteria such as Staphylococcus species, streptococcal species and Chlamydia trachomatis) and aberrant neurovascular signaling have all been implicated.1-11 Theories regarding pathogenesis extrapolated from clinical and experimental data include: 1) exposure to ultraviolet (UV) radiation; 2) reactive oxygen species (including superoxide and hydroxyl radicals, hydrogen peroxide and singlet oxygen); 3) vascular hyper-reactivity; 4) neuropeptide expansion; 5) exacerbation of innate immune response; 6) microbes, in particular Helicobacter pylori, and environmental aggressors such as the Demodex mite.13

While the ophthalmic and dermatologic communities have pulled back on the impact of H. pylori as a causative factor, citing too many contradictory reports, Demodex folliculorum has been implicated in subtype II—papulopustular rosacea—created by the expansion of blood and lymphatic vessels, the leakage of fluid and accumulation of cellular infiltrate.10,12,13 Greater numbers of mites have been identified in the...
lashes of these patients. Further, it has been hypothesized the mites themselves harbor bacteria that exacerbate the immune/inflammatory process. The organisms activate immune mechanisms in predisposed rosacea patients, serving as a trigger leading to the popular and/or postular phenotype. Other unknown cofactors may be present as well.

In contradistinction to other common inflammatory skin diseases such as psoriasis, lupus erythematosus or atopic dermatitis, the formula of cytokines and chemokines that orchestrate the initiation and perpetuation of rosacea are not fully known. The zinc-dependent endopeptidase, matrix metalloproteinase (MMP), specifically MMP-2 and MMP-9, have been isolated in the tear fluid of patients with corneal melting (keratolysis), recurrent corneal erosion and ocular rosacea. These substances have the potential to degrade all types of extracellular matrix.

During the early stages of disease, the innate immune system—along with neurovascular dysregulation—drives the dermatologic and ocular pathophysiology. Activation of the innate and adaptive immune systems and enhanced neuroimmune communications induce blood vessel and lymphatic vessel changes, with chemical messengers activating resident cells in the overlying skin, creating the red and scaly appearance of the adnexa. The local immune-inflammatory cascade induces the ocular complications. The reactive model also accounts for the classic effect of the speculated trigger activators, which can episodically induce acute episodes.

Sun exposure with its UV radiation and thermal signature raises the temperature of the skin, promoting flushing and response of the immune system. Spicy food, smoking, noxious chemicals, alcohol and temperature fluctuations (like being exposed to steam or the dry heat of a sauna, and even aggressive exercise) are also capable of modulating vascular function. The effect of bacterial protein production can activate sensory nerves and prompt the immune system to start the aberrant cascade, although it is still unclear whether neuronal activation precedes or follows the inflammatory infiltrate. Finally, the autonomic and/or sensory nervous system and its effect on neuronal dysregulation has received attention as its modulation (via alpha-adrenergic receptors or beta-adrenergic blockers) seems to help some patients.

Management

True ocular rosacea is not curable, merely controllable. Once the disease has been identified, patient education should be delivered so that as many triggers as possible can be avoided. Since the signs and symptoms of ocular rosacea are generated by local and systemic components, both should be addressed.

Lid scrubs can maintain normal eyelid and adnexal skin flora and cleanliness. Topical lubricants can keep the ocular surface moist and free from frictional and mechanical trauma. Topical antibiotics and antibiotic/steroid combinations can be employed to eradicate local infection and suppress ocular inflammation. If recurrent erosions are present, bandage contact lenses and amniotic membranes may assist healing. Topical dermatologic antibiotic gels such as metronidazole, clindamycin, erythromycin and ivermectin can be prescribed QD or BID to resolve low-level skin infections, and can be used over long periods of time to maintain control during periods of acute aggravation. Use of topical vasoconstrictive agents such as azelaic acid 15% gel or brimonidine tartrate 0.5% gel, QD or BID, can improve cosmesis and quell symptoms. A three-week course of oral antibiotics such as doxycycline 100mg BID, tetracycline 250mg QD or an azithromycin taper will cure infection through antimicrobial control, while reducing systemic inflammation through MMP, interleukin and tumor necrosis factor-alpha suppression.

Low-dose oral antibiotics such as Periostat (20mg doxycycline hyclate QD) and Oracea (30mg immediate-release and 10mg delayed-release doxycycline monohydrate, QD) can be prescribed for long-lasting chronic therapy in recalcitrant or severe conditions.

Topical cyclosporine ophthalmic emulsion has demonstrated effectiveness as well for ocular manifestations of rosacea.

D. folliculorum and **Demodex brevis** infestation can be diagnosed by taking a complete-lash sample (one must get the root/follicle as that is where the organisms reside) and placing it under a light microscope to observe inhabiting organisms. If **Demodex** is found in the setting of blepharitic disease, treatment may be started with topical tea tree oil derived from the plant species *Melaleuca alternifolia*, which can be purchased from most natural health care stores or the commercially available Cliradex towelettes (4-terpineol, Bio-Tissue) BID to the affected areas over a 60-day period.

Clinical Pearls

- Triggers in susceptible patients with an altered vascular dysregulation system include: thermal heat and heat generated from chemicals in therapeutic ointments, creams, spicy foods and UV radiation (e.g., tanning bed); poor hygiene or chronic exposure to undesirable matter such as dirt, dust, oils, aerosolized chemicals, cigarette or cigar smoke; as well as illness or malaise.

- Ocular rosacea does occur in individuals with pigmented skin but may be harder to identify, as the chronic skin changes may be overlooked.

- The hallmark of ocular rosacea is that it responds well to topical steroids but reoccurs quickly when the medication is discontinued.
Blepharocconjunctivitis that returns following cessation of a topical antibiotic/steroid combination must be suspected as ocular rosacea.

- "Steroid addiction" is a common complication of the disease. As patients realize the benefits of prescribed or over-the-counter topical steroids, they often begin to self-administer, creating complications that range from thinning epidermal and dermal layers to the manifestation of a new condition known as perioral dermatitis.

- When treating Demodex, the initial eradication of the mites will not account for the 30-day incubation period; as such, a minimum of 60 days of treatment is recommended, with maintenance depending upon the individual.

NEUROFIBROMATOSIS

Signs and Symptoms

Neurofibromatosis (NF) is a rare, congenital, multisystem disorder that potentially involves the skin, eyes, nerves, brain and/or bones. The two basic forms of NF include type 1 (NF1) and type 2 (NF2), although NF1 is far more common, representing more than 90% of cases encountered clinically.1,2 Patients with NF1 display a variety of characteristic findings, some of which may be noted at birth; however, the majority of signs and symptoms typically develop in early childhood and progress throughout life. NF2 is usually diagnosed later in life, typically between ages 20 and 30, although children may sometimes manifest the disease.3 NF1 and NF2 may be encountered in both genders and in all races. Roughly half of all cases present with a family history of the disease, while the other half appear sporadically.

A diagnosis of NF1 may be established by the identification of two or more of the following clinical features:

1. Café-au-lait macules (CALM). These hyperpigmented skin lesions, seen in up to 95% of individuals with NF1, may be present at birth or appear later. They typically increase in size and number during the first decade of life.4,5 In order to be diagnostic for NF1, six or more CALM must be present, with a linear diameter of ≥ 15 mm in prepubescent individuals or ≥ 15 mm in postpubescent individuals.4,5

2. Skinfold freckling. Sometimes referred to as Crowe sign, these freckles are typically small and classically noted in the axillary (armpit) and inguinal (groin) region.4,5 Additional sites for freckling may include areas superior to the eyelids, beneath the breasts and around the neck.4

3. Cutaneous neurofibromas and/or plexiform neurofibromas. Cutaneous neurofibromas are the hallmark skin finding in neurofibromatosis type 1, presenting in late childhood/early adolescence and potentially increasing in size and number throughout life. These may manifest as perioral dermatitis.

- Café-au-lait macules (CALM). These hyperpigmented skin lesions, seen in up to 95% of individuals with NF1, may be present at birth or appear later. They typically increase in size and number during the first decade of life.4,5 In order to be diagnostic for NF1, six or more CALM must be present, with a linear diameter of ≥ 15 mm in prepubescent individuals or ≥ 15 mm in postpubescent individuals.4,5

- Skinfold freckling. Sometimes referred to as Crowe sign, these freckles are typically small and classically noted in the axillary (armpit) and inguinal (groin) region.4,5 Additional sites for freckling may include areas superior to the eyelids, beneath the breasts and around the neck.4

- Cutaneous neurofibromas and/or plexiform neurofibromas. Cutaneous neurofibromas are the hallmark skin finding in NF1, representing dysplastic dysplastic tumors formed by axonal processes, Schwann cells, fibroblasts, perineural cells and mast cells.4 These lesions usually present in late childhood or early adolescence, and may increase in size and number throughout life. They
are typically skin-colored and soft-textured, protruding from the skin surface. Cutaneous neurofibromas may vary considerably in size, sometimes achieving diameters of 5cm or larger. In most cases, cutaneous neurofibromas are not painful; however, some patients may report itching and tenderness to touch. When they involve the eyelids and adnexa, these lesions may preclude normal ocular hygiene and predispose the patient to blepharitis. They may also induce mechanical ptosis or ectropion.

In contrast to cutaneous neurofibromas, plexiform neurofibromas are seen in only about 30% of patients. They arise from multiple nerve fascicles and tend to grow lengthwise along the nerves, invading surrounding structures including the skin, fascia, muscle, bone and even internal organs. Like cutaneous neurofibromas, these lesions are typically seen in childhood, but continue to develop through adolescence and early adulthood. Unlike cutaneous neurofibromas, plexiform neurofibromas may cause significant pain by virtue of their extension into adjacent tissue. Additionally, they may cause substantial disfigurement as they expand. In order to be diagnostic for NF1, the patient must present with two or more cutaneous neurofibromas, or one plexiform neurofibroma.

- **Lisch nodules.** These raised, pigmented iris lesions represent focal hamartomas within the iris stroma and are highly diagnostic for NF1. Lisch nodules can be visualized on biomicroscopy in NF patients as young as six years of age. They appear as focal, well-circumscribed, dome-shaped lesions projecting from the surface of the iris, and varying in color from clear yellow to brown. Unlike iris nodules seen in other systemic disorders such as sarcoidosis or tuberculosis, Lisch nodules are not associated with anterior uveitis and patients generally remain asymptomatic. In order to be diagnostic for NF1, two or more Lisch nodules must be present.

- **Optic pathway gliomas.** These tumors represent the most common intracranial neoplasm in patients with NF1. They affect roughly 15% of children with NF1, and typically arise during the first decade of life. As compared with spontaneously occurring gliomas, NF1-associated gliomas are most often located along the optic nerve as opposed to the chiasmal or postchiasmal regions. While most patients manifesting these lesions are asymptomatic at the time of diagnosis, others may suffer from proptosis (sometimes displaying choroidal folds), visual acuity or visual field deficit, relative afferent pupillary defect, strabismus and optic disc edema or atrophy. Confirmatory diagnosis of optic pathway gliomas involves neuroimaging, specifically computed tomography (CT) or magnetic resonance imaging (MRI) of the orbit, chiasm and brain.

- **Osseous lesions.** Patients with NF1 are prone to a wide range of skeletal dysplasias. These may include sphenoid wing dysplasia (typically unilateral, abnormal development of the sphenoid bone resulting in orbital enlargement with subsequent enophthalmos or downward displacement of the globe), dystrophic calcification in either a sunken or protruding appearance, respectively), tibial pseudoarthrosis (abnormal thinning and bowing of the leg bone, predisposing affected individuals to pathologic weight-bearing fractures and simulating the appearance of a false joint), pectus excavatum and pectus carinatum (deformities of the chest and sternum resulting in either a sunken or protruding appearance, respectively), macrocephaly (enlargement of the skull and head in excess of two standard deviations of the normal circumference for any developmental age) and overall short stature.

- **Familial involvement.** Any first-degree relative with NF is substantial, and is considered a diagnostic feature when associated with any of the aforementioned clinical findings.

Manifestations of NF2 are primarily limited to the central nervous system, but this condition can also demonstrate ocular involvement. The distinguishing feature of NF2 is the presence of bilateral vestibular schwannomas (also known as acoustic neuromas, acoustic neuromas or acoustic neurilemmas), which are benign, typically slow-growing tumors that affect the vestibulocochlear nerve (CN VIII). Hearing loss due to vestibular schwannomas is the most common symptom associated with NF2, and may be accompanied by tinnitus and balance problems. Additional neurological findings may include multiple meningiomas, cranial nerve tumors and tumors of the spinal column.

Specific ocular findings may include visual field loss from optic gliomas, peripheral cranial nerve VII palsy with lagophthalmos associated with acoustic neuroma or, more commonly, juvenile cataracts of the posterior subcapsular or cortical variety. Cataracts are believed to occur in 60% to 80% of patients with NF2, although they tend not to cause visual debilitation and rarely require surgery. Cutaneous lesions may also be encountered in NF2, but are not the classic neurofibromas seen in NF1, and likely represent small schwannomas of peripheral nerve origin.

Pathophysiology

Both NF1 and NF2 are considered autosomal dominant genetic disorders with variable expression. NF1 results from a germline, loss-of-function mutation at the NF1 gene locus on chromosome 17q11.2, resulting in alteration or elimination of the gene’s primary protein product, neurofibromin. It is believed that neurofibromin nor-
nally serves to limit cell growth, and its absence or diminished expression results in increased cell growth.1,2 This in turn impacts the development of tissues derived from embryonic neuroectoderm, including melanocytes, neurons, nerve ganglia, Schwann cells, oligodendrocytes and astrocytes.16 More than 500 different mutations of the \textit{NF1} gene have been identified, and presumably this is why so many different clinical manifestations may be encountered.1

\textbf{NF2} is the result of mutations in the NF2 tumor-suppressor gene on chromosome 22q12-2.3,13,14 The NF2 gene codes for a protein known as merlin (moesin-ezrin-radixin-like protein), which, much like neurofibromin, functions to regulate growth in certain tissues, particularly neural tissue like Schwann cells.13,14,17 In the absence of merlin, tumors subsequently develop in susceptible target organs, giving rise to the clinical presentation seen in NF2.13

\textbf{Management}

Management of NF1 and NF2 is primarily aimed at appropriate diagnosis and identification of all potential manifestations of the disease. Individuals suspected of having NF should undergo a thorough physical evaluation to include dermatological, orthopedic, cardiovascular, ophthalmic, auditory and neurological assessment. Some also advocate a routine brain MRI at the time of diagnosis, although this remains controversial.1 Prenatal genetic counseling may be of value to individuals who are affected by, or are at risk for, the disease. Prenatal testing can also be performed for those at increased risk for NF via DNA analysis using fetal cells obtained by amniocentesis.7

Treatment for NF is limited to addressing the individual manifestations and pathologies associated with the disease. In NF1, surgical intervention may be attempted for discrete cutaneous or subcutaneous neurofibromas that are disfiguring or located in inconvenient locations (e.g., along the temple, precluding the use of spectacles); however, it may be impractical or impossible to successfully remove all cutaneous neurofibromas.7 Treatment of plexiform neurofibromas is more challenging due to their intimate involvement with nerve tissue and tendency for recurrence at the site of removal.19 Surgical removal may be attempted for disfiguring lesions, but should be guided by MRI to ensure the best outcome. Radiation therapy of plexiform neurofibromas is contraindicated, as it has been shown to increase the risk of developing malignant peripheral nerve sheath tumors in some patients.19 Children with NF1 who develop optic pathway gliomas generally do not require treatment, but chemotherapy is the treatment of choice for tumors that show evidence of progression.8,20

Management of skeletal manifestations in NF1 is primarily supportive, although corrective procedures may be undertaken. Bracing can be employed for long-bone bowing to prevent fractures, but surgical attempts to correct pseudoarthrosis are often unsatisfactory.11 Likewise, bracing is frequently employed for NF1-affected children with milder forms of dystrophic scoliosis; more severe scoliosis may be addressed via surgical fusion or the insertion of growing rods, but the outcome of such interventions is highly variable.11 Surgical correction may also be attempted for patients with sphenoid wing dysplasia, although techniques and outcomes vary widely.22-23 Chest wall deformities such as pectus excavatum and pectus carinatum are primarily a cosmetic issue in most cases, and hence surgical intervention is optional and at the discretion of the patient.1

NF2 presents a number of management dilemmas. The primary form of intervention involves microsurgical removal of symptomatic cranial and spinal tumors.14 Since hearing is the most impacted sense in NF2, removal of vestibular schwannomas is the most important consideration; however, timing, experience of the surgical team and the concurrent use of radiotherapy all impact the level of success.14 Poor surgical outcome can result in abrupt hearing loss, but auditory rehabilitation with cochlear or auditory brainstem implants may help preserve and enhance some auditory function.

Optic nerve meningeomas present a similarly challenging clinical scenario. Because of their anatomical location, complete surgical resection of these lesions has been associated with substantial neurological morbidity.13 Stereotactic radiosurgery—sometimes referred to as gamma knife or cyber knife treatment—has been used as an adjuvant or alternative to conventional excision.24,25 However, as is the case with NF1, the use of radiotherapy for tumor removal in NF2 can be of concern due to the potential for radiation-induced malignant transformation and adjacent tumor development.13,26

Cutaneous lesions in NF2 are typically only addressed if they present a cosmetic concern or result in a functional impairment, e.g., when they occur on the hand or the foot.3 Surgical intervention for these tumors is identical to that employed for non-NF2 patients, and outcomes appear to be equally favorable.27
NF1 is sometimes referred to as von Recklinghausen disease. Friedrich Daniel von Recklinghausen, a German pathologist, first documented the constellation of findings seen with neurofibromatosis in 1882.

Due to the potential for intracranial mass lesions in NF1, developmental and/or cognitive impairment remains an ever-present concern. Children diagnosed with NF1 should be sent for neuropsychological assessments as early as possible. Learning issues in these individuals often include visuospatial deficits, visuomotor deficits and language disorders, as well as fine and gross motor coordination deficits.28

The off-label use of anti-VEGF drugs such as bevacizumab has been shown to help improve function and, in some cases, diminish tumor size in patients with NF2-related vestibular schwannomas.29,30 These medications, which are primarily indicated for the treatment of specific cancers, are given by intravenous infusion.

Verruca and Papilloma

Signs and Symptoms

Verruca vulgaris is defined as a small, multi-lobulated, firm-but-moveable growth of the outer layers of the skin or mucus membranes.1-8 Warts, as they are commonly known, come in varied shapes and sizes; verruca vulgaris (the common wart) is raised with a roughened surface commonly found on the hands and knees; verruca plana (flat warts) are small, smooth, flattened lesions that are tan or flesh-colored, occurring in large numbers and commonly found on the face, neck, hands, wrists and knees; filiform, or digitate warts, are finger-like warts most commonly encountered on the face, especially near the eyelids and lips.8

Human papillomavirus (HPV), a papovavirus, is the causative agent of all warts.1-11 Verruca are estimated to occur in approximately 7% of the population, with a peak incidence of occurrence in the mid-teens.7 At least 63 subtypes of the virus are known.1-11 The non-carcinogenic HPV strains are tethered to particular locations. Cutaneous (common) verrucas occur on the face, body, tops of the hands and tops of feet. Plantar warts occur on the sole of the foot. Venerable warts occur on the genitals.1,11 The human papillomavirus virus is transmitted by direct contact, occurring from a wart on someone else or on oneself (autoinoculation).1,4 Warts are not associated with pain, but are a cosmetic nuisance. Unless they sprout in a critical or visible location, they have no impact on function or cosmesis. They tend to occur in the young but can be found on individuals at any age, without a preponderance for gender.1,2

The carcinogenic HPV strains are associated with lesions that evolve into malignancies of the cervix, vagina, vulva, penis, anal area and oropharynx.1-4 A carcinogenic variant of the benign squamous papilloma with verruca vulgaris (warts of the mouth) is the conjunctival lesion known as ocular surface squamous neoplasia (OSSN).9,31 HPV subtypes such as HPV-6, HPV-11 and HPV-16 increase the risk of...
Cutaneous verrucas occur on the skin or mucous membrane, including face, body, tops of the hands and tops of feet.

cancerous conversion.1,10,11 The incidence of OSSN increases in individuals with extensive exposure to ultraviolet (UV) radiation, human immunodeficiency virus (HIV) and exposure to HPV.10,11 Africa has the highest rates of OSSN in the world.10

Most lesions occur at the nasal limbus within the interpalpebral fissure, as this region receives the greatest exposure to sunlight.9 The lesions appear as pink, soft, moveable, translucent, lobulated, gelatinous lesions projecting from the bulbar conjunctiva onto the surface of the cornea.10,11 They are painless and generally do not interrupt function.10,11

Squamous cell papillomas are among the most common of benign eyelid lesions.12-18 The other frequent lesions include nevi, seborrheic keratoses, hidrocystomas, xanthelasma lesions and epidermal cysts.12,13 Like verruca, squamous cell papillomas are caused by HPV. They appear with no gender or racial bias, predominantly in patients older than 30 years.12-18 They are painless and only inhibit function when they arise in an area that permits it, adding weight to the superior eyelid, producing ptosis or becoming sufficiently large to obstruct vision. The lesions appear as soft, round, moveable, pedunculated lesions.12-14 They may be singular or multiple in configuration and can be smooth or have a cauliflower appearance.12-18 These lesions, sometimes referred to as skin tags, may also occur on the conjunctiva, in which case they are known as conjunctival papillomas.12-18 These, too, are classified by gross clinical appearance, as either pedunculated or sessile. Highly recurrent, they may return in the same position or in multiple positions, even creating symblepharon and lesions in the nasolacrimal drainage system.14,17,18

Pathophysiology

Verruca vulgaris lesions represent benign epidermal proliferations of the outer layers of the epithelium.7 Though verruca represent a proliferative process, they do remain stable and are typically benign. The lesions are caused by HPV-invading epithelial cells, with consequent cell proliferation and nodule/plaque formation.7 They usually occur in wet and macerated skin areas of the body that touch rough surfaces.7 Abrasions in the epidermis are sites of entry for HPV, which moves into basal keratinocytes of the epithelium.7 Scratching, shaving or traumatizing the skin are all vectors for spreading HPV to other locations.7 Since a strong immune response is not created by the viral agent, the lesion is permitted a self-limited silent growth period for months or even years.7

The clinical presentations (size and appearance) of verruca vulgaris lesions vary according to the viral subtype that causes them and the anatomical site infected.7 Benign verruca vulgaris lesions include squamous papilloma with verruca vulgaris (warts of the tongue and palate), focal epithelial hyperplasia (warts of the buccal mucosa-Heck disease) and condyloma (clustered warts of the mouth or genitals). Verruca vulgaris is most commonly induced by HPV-2, HPV-4 or HPV-40.7

Squamous cell papillomas have pathophysiology similar to verruca: they are caused by direct contact with another wart containing HPV (HPV 6,11), and represent inflammatory hypertrophy of the outer layers of the skin (hence their name) with viral inclu-

Management

Verruca are usually slow-growing, self-limiting lesions. The key to observational management is accurate measurement via a detailed drawing and/or photodocumentation. Patients should be reexamined at regular intervals and counseled to immediately report changes in size, shape, color, elevation or growth pattern. Spontaneous resolution may take months to years or not occur at all, and spontaneous clearance rates are painfully low (23% at two months, 30% at three months, and 65% to 78% at two years). Since the lesions are contagious and capable of replicating, intervention may be suggested.4

If removal is warranted secondary to compromised function or poor cosmesis, patients must be advised that verruca are known to be recurrent and resistant to therapy.4 As a contagious disorder, verruca, when removed, can cause viral particles to be transmitted to other areas where additional warts may form as a consequence. Removal should be completed by a specialist skilled in dermatology, such as an ophthalmologist trained...
in oculoplastics, or a dermatologist.19-21 Topical 10% zinc solutions applied TID can be tried with and without oral supportive zinc therapy (10mg/kg/day) for two months.19 Topical cantharidin (Aldara) is an immunomodulator that stimulates immune response through cytokine release, approved for the treatment of external genital warts.4 Not well absorbed through the skin, it is infrequently used in cutaneous warts. In an open-label, uncontrolled study, 5% Imiquimod cream applied on five successive days over 16 weeks yielded variable success with minimal recurrence.3 Mild transient local inflammation was the only side effect.4 Topical green tea catechins (Polyphenon E, MediGene) is a defined extract of catechins of the green tea leaves of the species Camellia sinensis. Containing tea polyphenols and flavonoids (i.e., antioxidants that inhibit the transcription of HPV viral proteins), it is typically applied to the affected area TID.3 Other therapies include cryotherapy, chemical cauterization (alkali water, silver nitrate pencil), curettage, electrodesorption and laser removal.4,8,19-22

Clinical Pearls
- While HPV lesions are benign, they are effectively contagious; if they are abraded, they can incite additional lesions to grow if the viral particles gain access to another location.
- All tumor lesions should be inspected for moveability (mobile is better than bound down), firmness (soft is better than hard), size (<6mm is better), shape (symmetry is good), color (uniformity and less dark is better) and elevation. Changes in any of these suggest fluctuation worthy of consultation with a specialist skilled in dermatology and complete removal and biopsy if necessary.

• Tumor lesions should be photodocumented and measured at regular six-month intervals.

TRICHIASIS

Signs and Symptoms
Trichiasis is defined as the misdirection of one or more eyelashes toward the ocular surface.1-3 By definition, minor trichiasis involves fewer than five cilia, while major trichiasis affects five or more.1,2 Worldwide, the most common cause of trichiasis is trachoma, a cicatrizing ocular infection instigated by the obligate intracellular parasite, *Chlamydia trachomatis*. In highly developed nations such as the United States, however, trachoma is exceedingly rare, and trichiasis is typically associated with blepharitis, inflammatory conjunctivitis, eyelid trauma or neoplasms affecting the eyelid margin.1-5 The condition may occur unilaterally or bilaterally depending upon the etiology, and can affect the upper or lower eyelid with equivalent frequency. There is no known racial or gender predilection, but the frequency of trichiasis does appear to increase with age.1,2

Patients with trichiasis are symptomatic in the vast majority of cases, commonly reporting foreign body sensation in the affected eye. Other subjective complaints may include dryness, burning, pain, photophobia, redness, mucus discharge and epiphora.1 In extreme cases, patients may present with blephro-pasam due to unrelenting ocular discomfort.1 Biomicroscopy of patients with trichiasis typically reveals the errant lash or lashes, although some cases may prove more difficult to diagnose, particularly when the follicles project from the superior lid and are associated with dermatocochalasis or epicanthal folds. In such instances, it may be helpful to look for secondary ocular signs including focal or diffuse conjunctival hyperemia and localized disruption of the cornal epithelium as noted by sodium fluorescein staining.2 With persistent or severe trichiasis comes increased risk of potentially...
When treating your patients with bacterial conjunctivitis –

Unleash power against pathogens of concern.

• The first and only topical ophthalmic chlorofluoroquinolone
• Provides long-lasting tear concentrations
• Proven efficacy against a broad spectrum of pathogens including:
 – S. aureus, S. epidermidis, S. pneumoniae, and H. influenzae
 – Pseudomonas aeruginosa

Indication

BESIVANCE® (besifloxacin ophthalmic suspension) 0.6% is a quinolone antimicrobial indicated for the treatment of bacterial conjunctivitis caused by susceptible isolates of the following bacteria: Aerococcus viridans*, CDC coryneform group G, Corynebacterium pseudodiphtheriticum*, Corynebacterium striatum*, Haemophilus influenzae, Moraxella catarhalis*, Moraxella lacunata*, Pseudomonas aeruginosa*, Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus hominis*, Staphylococcus lugdunensis*, Staphylococcus warneri*, Streptococcus mitis group, Streptococcus oralis, Streptococcus pneumoniae, Streptococcus salivarius*

*Efficacy for this organism was studied in fewer than 10 infections.

Important Safety Information about BESIVANCE®

• BESIVANCE® is for topical ophthalmic use only, and should not be injected subconjunctivally, nor should it be introduced directly into the anterior chamber of the eye.
• As with other anti-infectives, prolonged use of BESIVANCE® may result in overgrowth of non-susceptible organisms, including fungi. If super-infection occurs, discontinue use and institute alternative therapy.
• Patients should not wear contact lenses if they have signs or symptoms of bacterial conjunctivitis or during the course of therapy with BESIVANCE®.
• The most common adverse event reported in 2% of patients treated with BESIVANCE® was conjunctival redness. Other adverse events reported in patients receiving BESIVANCE® occurring in approximately 1-2% of patients included: blurred vision, eye pain, eye irritation, eye pruritus and headache.
• BESIVANCE® is not intended to be administered systemically. Quinolones administered systemically have been associated with hypersensitivity reactions, even following a single dose. Patients should be advised to discontinue use immediately and contact their physician at the first sign of a rash or allergic reaction.
• Safety and effectiveness in infants below one year of age have not been established.

Please see brief summary of Prescribing Information on adjacent page.

To learn more about BESIVANCE® call your Bausch + Lomb sales representative today.

Besivance is a trademark of Bausch & Lomb Incorporated or its affiliates. © 2015 Bausch & Lomb Incorporated. All rights reserved. US/BL/15/0010
INDICATIONS AND USAGE

Besivance is administered to a nursing mother. It can be presumed to be excreted in human milk. Caution should be exercised when Besivance is administered to a nursing mother.

NURSING MOTHERS

Besivance has not been measured in human milk, although it can be presumed to be excreted in human milk.

8.2 Pregnancy

Pregnancy Category C. In the clinical trial with pregnant women, fertility and early embryonic development studies in rats indicated that Besivance administered systemically has the potential to cause fetal malformations at a high incidence. Therefore, Besivance should be administered to pregnant women only if the potential benefit justifies the potential risk to the fetus.

11 CLINICAL STUDIES

Two clinical trials were conducted under widely varying conditions; adverse reaction rates observed in one clinical trial of a drug cannot be directly compared with the rates in the clinical trials of the same or another drug and may not reflect the rates observed in practice. The data described below reflect exposure toBesivance in approximately 1,000 patients between 1 and 98 years old with clinical signs and symptoms of bacterial conjunctivitis. The most frequently reported ocular adverse reaction was conjunctival redness, reported in approximately 2% of patients.

Other adverse reactions reported in patients receiving Besivance occurring in approximately 1-2% of patients included: blurred vision, eye pain, eye irritation, eye pruritus and headache.

14 CLINICAL STUDIES

In a randomized, double-masked, vehicle controlled, multicenter clinical trial, in which patients 1-98 years of age were dosed 3 times a day for 5 days, Besivance was superior to its vehicle in patients with bacterial conjunctivitis. Clinical resolution was achieved in 45% (90/198) for the Besivance treated group versus 33% (63/191) for the vehicle treated group (difference 12%, 95% CI 3% - 22%). Microbiological outcomes demonstrated a statistically significant eradication rate for causative pathogens of 91% (181/198) for the Besivance treated group versus 60% (114/191) for the vehicle treated group (difference 31%, 95% CI 23% - 40%). Microbiological eradication does not always correlate with clinical outcome in anti-infective therapy.

17 PATIENT COUNSELING INFORMATION

Patients should be advised not to wear contact lenses if they have signs or symptoms of bacterial conjunctivitis or during the course of therapy with Besivance.

ADVERSE REACTIONS

Because clinical trials are conducted under widely varying conditions, adverse reaction rates observed in one clinical trial of a drug cannot be directly compared with the rates in the clinical trials of the same or another drug and may not reflect the rates observed in practice.

The No Observed Adverse Effect Level (NOAEL) for this embryo-fetal development study was 100 mg/kg/day (Cmax, 5 mcg/mL, >11,000 times the mean plasma concentrations measured in humans). The No Observed Adverse Effect Level (NOAEL) for both fetal and maternal toxicity were also 100 mg/kg/day. At 1000 mg/kg/day, the pups weighed approximately 2% of patients.

No Observed Adverse Effect Level (NOAEL) for this embryo-fetal development study was 100 mg/kg/day (Cmax, 5 mcg/mL, >11,000 times the mean plasma concentrations measured in humans). The No Observed Adverse Effect Level (NOAEL) for both fetal and maternal toxicity were also 100 mg/kg/day. At 1000 mg/kg/day, the pups weighed approximately 2% of patients.

No Observed Adverse Effect Level (NOAEL) for this embryo-fetal development study was 100 mg/kg/day (Cmax, 5 mcg/mL, >11,000 times the mean plasma concentrations measured in humans). The No Observed Adverse Effect Level (NOAEL) for both fetal and maternal toxicity were also 100 mg/kg/day. At 1000 mg/kg/day, the pups weighed approximately 2% of patients.

No Observed Adverse Effect Level (NOAEL) for this embryo-fetal development study was 100 mg/kg/day (Cmax, 5 mcg/mL, >11,000 times the mean plasma concentrations measured in humans). The No Observed Adverse Effect Level (NOAEL) for both fetal and maternal toxicity were also 100 mg/kg/day. At 1000 mg/kg/day, the pups weighed approximately 2% of patients.
Trichiasis may occur unilaterally or bilaterally depending upon the etiology, and can affect the upper or lower eyelid (in this case, upper) with equivalent frequency.

sight-threatening complications, including corneal ulceration, infection, vascularization and scarring.\(^2,3,5\)

Pathophysiology

Trichiasis is an umbrella term for disorders characterized by contact between the eyelashes and the globe. The literature describes a number of related conditions that present with lash/globe contact, including distichiasis and metaplastic or aberrant lashes.\(^3\) However, trichiasis should not be considered synonymous with *entropion*, which refers to a disorder of eyelid malpositioning in which all or part of the lid margin rotates inward against the ocular surface. When this occurs, secondary trichiasis inherently results.\(^1,3\) Trichiasis can ensue independently, with the lid margin maintaining a normal orientation to the globe.

In healthy patients, eyelash follicles emanate from the distal aspect of the anterior lamella, curving out and away from the ocular surface. Trichiasis occurs when one or more cilia deviate from this pattern and instead turn inward toward the ocular surface. Lid inflammation (and the pathological changes that follow) has been heralded as the most common etiology of this transformation.\(^1-4\) Disorders such as chronic blepharitis have been implicated in trichiasis, but more severe inflammatory conditions such as Stevens-Johnson syndrome, ocular cicatricial pemphigoid, chemical and mechanical trauma, leprosy, trachoma and herpes zoster ophthalmicus have been associated as well.\(^1,3\)

Malignancies and other dermatological conditions of the eyelid can also potentially induce trichiasis.\(^1,4\)

While little has been written regarding the actual morphological changes associated with this condition, researchers in 1998 evaluated 116 patients with a provisional diagnosis of trichiasis in order to better characterize and classify the various presentations.\(^8\) They found that a majority of their subjects (69%) displayed metaplastic conjunctivalization of the meibomian gland orifices as well as anterior displacement of the mucocutaneous junction of the lid. These changes were verified using scanning electron microscopy. The authors described this condition as *lid border entropion*, but distinguished it from involutional entropion in that it was nearly clinically indiscernible by gross evaluation; a constant, rather than intermittent finding; and not invoked by forced closure of the eyelids.\(^8\) In 15% of their subjects, trichiasis was attributed to focal notches in the lid margin as a result of prior surgery (tarsorrhaphy or tumor excision). These patients displayed a normal lash line except in the notched area, where distortion of the hair follicles resulted in misdirected lashes.\(^8\) Only about 6% of the subjects in this study presented with misdirected lashes and an entirely normal lid margin configuration; another 6% were found not to have any actual trichiasis, despite being symptomatic and having been previously diagnosed by a clinician.\(^8\)

Hence, based on this study, it seems that the pathophysiology of trichiasis commonly involves changes to the tissue of the supporting lid, not to the lash itself.

Management

The primary goal in managing trichiasis is amelioration or elimination of lash/globe contact, thereby improving patient comfort and deterring pathological changes to the ocular surface. Conservative, nonsurgical interventions may be appropriate for those with minor trichiasis as a temporary measure in individuals awaiting surgery, or for those who refuse to or cannot undergo surgical intervention. The most common options include ocular lubricants, bandage contact lenses and mechanical epilation with forceps.\(^1,2\) Epilation is quick, easy to perform and quite effective, often providing instantaneous relief of symptoms. Unfortunately, follicles typically regrow in four to six weeks, resulting in recurrence of the condition and subjective discomfort.\(^1,2,10\)

Additionally, if the lash breaks low along the follicle during epilation rather than at the root, the resulting sharp stub may be even more irritating to the patient.\(^6\) Hence, conservative measures need to be repeated and frequently monitored; they are rarely viable for long-term management.\(^11\)

A variety of surgical modalities and techniques for trichiasis have been described.\(^10,12-21\) Electrolysis—employing the use of electrical current along a fine needle to destroy the hair follicle—has been used to treat trichiasis since before the turn of the last century.\(^12\) This procedure is best employed in minor or isolated trichiasis, since the removal of multiple eyelashes may induce scarring and leave the globe unprotected. Electrolysis also has reported recurrence rates of approximately 50%.\(^30\)

A more effective and generally safer technique is radiofrequency ablation. Like electrolysis, it is rapid and relatively inexpensive, with a success rate of up to 65% with a single treatment.\(^14,15\)

Adjunctive use of topical mitomycin C appears to significantly improve the success rate of radiofrequency ablation.\(^14\) Complications are usually minor,
including short-lived edema and/or hematoma of the treated lids.\(^1\)

Laser ablation is comparable to radiofrequency, and may be performed with a variety of platforms, including argon, neodymium yttrium-aluminum-garnet (Nd:YAG), diode and ruby lasers.\(^{16-19}\) Advantages of laser treatment include less thinning of the tarsus, less damage to the pilosebaceous units surrounding the follicle and less inflammation overall. Disadvantages include procedure time and cost of the equipment.\(^{16}\) Cryotherapy is sometimes used for treating large, confluent areas of trichiasis, but it carries significant risk of complications, such as lid depigmentation, lid notching and xerosis.\(^{20}\) Surgically splitting the eyelid at the gray line and treating the anterior lid lamella with selective cryotherapy may diminish these potential complications.\(^{20}\)

Finally, incisional surgery may be required for diffuse trichiasis, or when less invasive methods fail. Eyelash trephination involves the use of a hollow, small-gauge tube to effectively bore out the lash follicle and bulb under local anesthesia.\(^{10}\) The concurrent use of electrocautery and trephination demonstrated a success rate of 89% in one recent, small study.\(^{21}\) More extensive or recalcitrant trichiasis often requires specialized and intricate surgical procedures, including partial excision of the anterior lamella, anterior lamella repositional or eyelid splitting with mucocutaneous or oral mucosal graft.\(^{1,22}\) These procedures are typically only performed by highly skilled and experienced oculoplastic surgeons.

Clinical Pearls

- **Distichiasis** represents a congenital disorder in which an additional row of lashes arises from the meibomian gland orifices.
- **Metaplastic lashes**, also known as aberrant lashes, are identical in presentation to distichiasis, but represent an acquired rather than a congenital dys-function. Metaplastic lashes are most commonly seen in trachoma or in late-stage Stevens-Johnson syndrome.\(^{23,24}\)
 - In both distichiasis and metaplastic lashes, the meibomian glands assume the hair-bearing state of their progenitor pilosebaceous unit, and develop a lash follicle where one should not be present.\(^8\)
 - **Trichiasis** (including distichiasis and metaplastic lashes) must be differentiated from entropion, which often results from horizontal lid laxity. The clinician should also look carefully for areas of symblepharon and fornix scars.\(^1\)
 - Detecting trichiasis does not pose a great diagnostic challenge in most cases, but thorough assessment is critical in order to identify related conditions that may alter the management strategy.
 - Careful examination of the lids should be performed to identify any potential malignancies, especially basal cell carcinoma.
 - Application of lissamine green can help identify Marx's line at the mucocutaneous junction. Anterior displacement of this line such that it is coincident with or anterior to the meibomian gland orifices is indicative of lid border ectropion (a known progenitor of trichiasis).\(^8\)
 - It is not uncommon to see hair follicles growing from the lacrimal caruncle at the medial canthus. For the most part, this is a normal physiological phenomenon and does not warrant intervention.

UNCOVER
A POTENTIAL SYSTEMIC CAUSE OF DRY EYE
BEFORE IT TAKES HOLD

Sjö®
Diagnostic test for early detection of Sjögren’s syndrome in patients with dry eye

For more information about the Sjö® Diagnostic Test, please call or email Bausch + Lomb Support Services at 855-696-4269 or support@bldiagnostics.com.
CONJUNCTIVA AND SCLERA

CONJUNCTIVOCHALASIS

Signs and Symptoms
Conjunctivochalasis (CCh) represents an ocular surface condition in which there is atypical redundancy and laxity of the bulbar conjunctiva, without the presence of edema.1-4 It is most commonly seen with aging, and may present with a wide range of symptoms that are usually ascribed to dry eye disease. These may include irritation or foreign body sensation, burning, dryness, itching, intermittent tearing, epiphora and contact lens intolerance.1,2 Often more prominent in the morning upon awakening, symptoms are exacerbated by rapid or vigorous blinking.1,3 Visual discomfort may also be noted and is typically more bothersome in downgaze, such as when the patient is reading.1,2 Additionally, patients are often cosmetically symptomatic, as blood vessels in the redundant conjunctiva crowd together to create a “bloodshot” or hyperemic appearance. CCh is most commonly a bilateral condition, although symptoms may be more pronounced in one eye than the other.3

Biomicroscopy in patients with CCh reveals pleated folds in the conjunctival tissue, sometimes referred to as fid-parallel conjunctival folds (LIPCOF).5 These are most evident inferiorly, just above the lower lid margin; they may be seen more readily when digital pressure is applied to the lower lid, or when the patient’s gaze is directed downward.2 LIPCOF are typically graded by the scale first proposed by Höh and associates in 1995 (grade 0: no persistent folds; grade 1: single, small fold; grade 2: more than two folds and not higher than the tear meniscus; grade 3: multiple folds and higher than the tear meniscus).5 CCh less commonly affects the superior bulbar conjunctiva, where it can give rise to a condition resembling superior limbic keratoconjunctivitis (SLK) of Theodore.6 Additional signs that have been associated with CCh include swollen lacrimal puncta7 and subconjunctival hemorrhage.1,4,7

Specific testing can help to identify CCh and, more importantly, differentiate it from aqueous-deficient dry eye (ADDE). In CCh, vital dyes such as lissamine green or sodium fluorescein may be seen to collect between the redundant conjunctival folds, greatly enhancing their visibility. In these areas, the tear meniscus often appears to be diminished or absent, despite being evident along the junction between the lower lid and cornea.5 Fluorescein tear break-up time (FTBUT) is typically normal in mild and moderate cases, assuming there is no concurrent pathology of the cornea. A diminished FTBUT, which is considered diagnostic in cases of ADDE, is usually only encountered in the most severe cases of CCh (i.e., grade 3).4 Similarly, tear osmolarity, which is elevated in ADDE, remains normal in all but the most severe cases of CCh.9 Schirmer test scores (and, by association, phenol red thread test scores) are also characteristic normal in cases of CCh, despite the fact that the tear meniscus is displaced.4 Conversely, Schirmer scores are inherently diminished in cases of ADDE.

Pathophysiology
At least nine different factors contributing to the development of conjunctival folds in CCh were proposed between 1921 and 2000; these include eye movement, lid relaxation, lid pressure, chronic conjunctivitis, obstruction of lymphatic flow, degeneration of elastic fibers, tear deficiency, actinic action and delayed tear clearance.1 A degenerative basis for CCh seems most likely, since the majority of patients with this condition are over the age of 50. Additionally, documented associations have been established between CCh and both pinguecula and dermatochalasis—degenerative disorders of the conjunctiva and eyelid, respectively.1,4,10,11 Yet, histopathologic studies of conjunctivae taken from patients with CCh reveal normal cytology in the majority of cases, with lymphangiectasia and inflammatory infiltrate being observed in a small percentage of subjects.12,13 Given the myriad possibilities, it seems that the pathogenesis of conjunctival folds in CCh is likely multifactorial in nature, resulting from a combination of senescent, traumatic and immunologic effects.13

The cascade of events occurring at the ocular surface level once CCh becomes manifest is more certain. Conjunctival folds disrupt the tear meniscus and interfere with normal tear outflow through the inferior punctum, a phenomenon referred to as delayed tear clearance (DTC).1,4,14-16 DTC may be seen in a variety of ocular surface disorders, and is independently associated with symptoms of ocular irritation as well as corneal epithelial disease.7 Moreover, DTC is believed to promote inflammation, due to accumulation of tear cytokines, protelytic enzymes and cytotoxic factors in the tear fluid.5,17,18 Such inflammatory elements have been demonstrated in the tears of patients with more severe cases of CCh.19-21 Mechanically, CCh also causes a displacement of the normal space between the ocular surface and lower lid. Redundant conjunctival folds move downward with gravity and occupy the inferior fornix, effectively negating its function as a tear reservoir.14,22 The combined effects of disrupted tear flow...
and loss of the normal reservoir result in epiphora and dry eye disease, both common in CCh.

In the most extreme cases of CCh, conjunctival folds may actually protrude across the lid margin and create a physical barrier to normal lid closure, resulting in further exposure and desiccation of the ocular surface. Patients with these severe changes may secondarily suffer from nocturnal lagophthalmos, a condition that can often be corroborated by family members or significant others.

Management

Intervention for patients with CCh typically depends upon the severity of the condition and its related signs and symptoms. It is common for clinicians to ignore CCh in asymptomatic individuals, although the progressive nature of this condition dictates, at the very least, a more focused history along with patient education regarding ocular surface disorders. Mild irritation can often be managed successfully with ophthalmic lubricants and short-term treatment directed at associated pathologies (e.g., night patching for nocturnal lagophthalmos). A recent study demonstrated clinical improvement in patients treated conservatively with a novel, preservative-free artificial tear (Conheal; PannonPharma) containing isotonic glycerol and 0.015% hyaluronic acid in purified water. This formulation is, unfortunately, not yet available in the United States.

Despite the fact that CCh has been associated with increased levels of inflammatory mediators, topical anti-inflammatory agents such as corticosteroids or NSAIDs have not been proven to resolve the issue. Although symptoms may initially improve, evidence does not exist that topical anti-inflammatory drugs can restore the conjunctiva in CCh to a normal configuration. Moreover, the retention of these drugs and their preservatives on the ocular surface may actually aggravate the condition, in light of delayed tear clearance. Ultimately, most symptomatic patients with CCh will require surgical intervention to achieve symptomatic resolution.

While there is no clear consensus regarding the surgical technique of choice for CCh, the goal is to eliminate (or at least reduce) the laxity and redundancy of the conjunctiva, while helping to reconstruct a normal tear meniscus. Less invasive measures that have shown some degree of success include both thermal cautery and high-frequency radiofrequency electrocautery of the lax tissue along the inferior bulbar conjunctiva. Surgical resection of the inferior bulbar conjunctiva in a crescent-shaped pattern is another treatment option, which more definitively eliminates redundant conjunctival tissue. Modifications on this technique include the use of amniotic membrane grafts over the resected area and the employment of fibrin glue in lieu of sutures.

The latest and most elaborate surgical technique for treating CCh has been described as the "reservoir restoration procedure." In addition to resecting the redundant conjunctiva from the inferior bulbar region, this technique includes: excision of mobile and degenerated Tenon's fascia from the episcleral surface and the underside of the conjunctiva; fornix deepening reconstruction with ablation of prolapsed orbital fat, and conjunctival recession into the fornix; and cryopreserved amniotic membrane transplantation to the affected area using tissue glue in lieu of topical anesthesia. Clinical Pearls

- A key differential of CCh is conjunctival chemosis associated with allergic conjunctivitis. CCh results in characteristic folds of the conjunctiva that disappear when the lower lid is depressed or withdrawn. The "boggy" edema associated with allergy tends to be constant and often produces a "watchglass" effect around the limbus.

- Patients presenting with CCh affecting the nasal conjunctiva often have more pronounced symptoms, decreased Schirmer scores, increased meibomian gland dropout and increased eyelid vascularity compared with individuals whose CCh do not involve the nasal conjunctiva. This discrepancy is presumably due to physical blockade of the inferior punctum, causing a cascade effect of altered distribution, composition and stability of tears.

- Although CCh is typically thought of as an age-related ocular surface disorder, research has identified a strong association between this condition and autoimmune thyroid disease. Additionally, cases of CCh have been described in association with both Ehlers-Danlos syndrome and cutis laxa. Hence, a thorough medical history in these patients remains essential.

- While CCh and dry eye disease represent distinctly different pathologies with often disparate clinical findings, more severe cases of CCh appear to present with increasingly similar test results, including diminished Schirmer values, elevated matrix metalloproteinase (MMP)-9 levels, increased tear osmolarity and more extensive vital dye staining of the ocular surface. Hence, patients with severe CCh may actually convert to dry eye disease due to pathological changes at the ocular surface level and the close relationship of all structures comprising the lacrimal functional unit. Still, conventional treatments for dry eye...
Conjunctival intraepithelial neoplasia

Signs and Symptoms
Conjunctival intraepithelial neoplasia (CIN) is the most common neoplasms of the ocular surface in immunocompetent individuals. It is the precursor to conjunctival squamous cell carcinoma in situ (CIS or SCC) of the conjunctival epithelium, the most common ocular surface neoplasm in all patient populations.

Ocular surface squamous neoplasia (OSSN) is an alternate term used in the literature to describe neoplastic epithelial abnormalities of the conjunctiva and cornea, ranging from squamous dysplasia to invasive squamous cell carcinoma.

The clinical features of CIN include a hyperemic, soft, movable nodular mass with well-defined borders on the conjunctiva within the palpebral fissure, possibly extending to involve the palpebral conjunctiva or peripheral cornea. The mass is often greater than 2mm in vertical height and, depending upon the ability of it to remain moistened by tears, may contain areas of drying and necrosis. No consistent clinical criteria exist for distinguishing CIS from the more invasive SCC. The presence of an intradermic feeder vessel in a nodular lesion should raise suspicion of invasive SCC. OSSN usually presents either as a fleshy, gelatinous, elevated lesion or as a sessile papilloma within the temporal or nasal interpalpebral region.

In all of these variants, vision is rarely affected, as the lesions do not tend to encroach onto the cornea over the visual axis. Patients may complain of a region swelling with redness and irritation. Cases left unmanaged can expand in size, infiltrating the cornea and sclera. In the worst circumstances, the tumor can invade the orbit, causing proptosis.

Risk factors for CIN include exposure to ultraviolet light, the vapors of petroleum products and first- or second-hand cigarette smoke, and having light hair, a fair complexion, and a history of excess sun exposure. 3-5

Risk factors for CIS include exposure to cigarette smoke, occupational exposure to cutaneous human papillomavirus (HPV), and a history of previous non-melanoma skin cancer. 3-5

CIN is known to affect men more frequently than women after the sixth decade of life. CIC accounts for approximately 39%
Pathophysiology
Conjunctival intraepithelial neoplasia is a malignant neoplasm arising from limbal stem cells. CIN invades through epithelial basement membrane into the conjunctival or corneal stroma and, though rare, into the globe or orbit. CIN is characterized by involvement of nonkeratinized epithelium occurring at the transition zones of the surface epithelium. Partial-thickness replacement of the epithelium occurs by anaplastic cells that lack normal maturation.

The pathogenesis of CIN transformation into the more invasive squamous cell carcinoma (SSC) involves pathologic changes associated with immunosuppression in the setting of coinfection with HPV. Histopathologic examination shows epithelial dyskeratosis with spindle cells that have prominent nuclei. Invasive SCC breaches the basement membrane of the basal epithelial cells and becomes well differentiated into a neoplasm composed of abnormal mitotic epithelial cells and keratin.

Occasionally, pleomorphic cells, numerous mitotic figures, acanthosis and dyskeratosis are present.

The American Joint Committee on Cancer (AJCC) provides a section committed to staging tumors of the ocular surface. A simplified accounting of the AJCC classification for ocular surface tumors is: T1 (tumor ≤ 5mm in greatest dimension); T2 (tumor > 5mm in greatest dimension, without invasion of adjacent structures); T3 (tumor invades adjacent structures, excluding the orbit) and T4 (tumor invades orbit with or without further extension).

Management
As the diagnosis of OSSN and its variants is typically made by observation of appearance and biopsy, it is unclear if OCT provides additional benefits other than accurate and repeatable measurement, the ability to noninvasively screen tissues for changes associated with the disease, and an ability to monitor progress following the employment of surgical and nonsurgical interventions.

Treatment for CIN and its variants has historically been surgery; however, nonsurgical interventions are rising in popularity because of their ability to remove the lesion while protecting the ocular surface from the formation of additional lesions. Nonsurgical solutions eliminate the risks associated with surgical complications, as ocular surface surgery is rarely simple.

Excisional biopsies involve resection, cryotherapy (applied to the margin of the tumor to kill tumor-margin cells), proton beam radiation, corneal epitheliectomy with alcohol application when the cornea is involved, lamellar sclerectomy and alcohol application to the tumor base when the episclera is breached. Tumor resections often require complicated ocular surface reconstructions that may or may not involve the placement of cryopreserved amniotic membrane. Surgical removal carries a good prognosis with reduced risk for recurrence.

Tumors with higher recurrence risk are those with tarsal involvement, pathologic presence of positive margins and a nasal location. Tumors treated with cryotherapy have been associated with a decreased risk of tumor recurrence.

Medical treatments for ocular surface tumors include intralesional mitomycin-C, 5-fluorouracil, cidofovir and interferon 2b. Mitomycin-C (MMC 0.02–0.04%) QID four days a week has been shown to be highly effective, but not without short and long-term side effects, including conjunctival hyperemia and punctate corneal erosions. Prolonged use may lead to scleral melt. The side effects make this intolerable treatment for some patients. Topical interferon 2b (IFN) and 5-fluorouracil have been found to have similar efficacy to MMC with better patient tolerability. The beneficial role of interferon includes immunomodulation, antiproliferative effects and antiviral effects. The reported success rate is 83% with topical IFN at one million units daily for six to 12 months. The most common complication of IFN therapy is transient flu-like symptoms.

Due to the known association of CIN with cervical intraepithelial neoplasia (caused by either HPV or immunosuppression), appropriate gynecological referrals and testing should be recommended.

Clinical Pearls
- Since CIN may indicate reduced immune competence, appropriate testing should be initiated.
- As CIN has a connection with cervical cancer, an appropriate referral in female cases is warranted.
- Differential diagnoses include Kaposi’s sarcoma, amelanotic melanoma and conjunctival basal cell carcinoma.
- New sensitive anterior segment instrumentation may permit imaging of suspicious lesions. Biopsy remains the
standard of care. Imaging and photography have the potential to accurately document these lesions so changes in size, shape, color or elevation can be more easily observed by the clinician who is monitoring the lesion.

CONJUNCTIVAL CYSTS

Signs and Symptoms
The term cyst is derived from the Greek word kystis, meaning “bladder” or “pouch,” and describes the sac-like nature of these common lesions. Conjunctival cysts are generally seen as thin-walled vesicles containing clear or, less commonly, turbid fluid.1-3 Epithelial debris may also sometimes be seen at the base of these lesions.4 They may arise from virtually any aspect of the conjunctival anatomy, including the tarsus, but are more commonly noted affecting the bulbar conjunctiva and fornix.5

When seen on the bulbar conjunctiva, they often resemble a raised blister, with conjunctival blood vessels coursing over and around the lesion. In the fornix, small conjunctival cysts may be flat-surfaced and appear as “window defects,” demonstrating fluid with or without cellular material beneath. Larger cysts in the fornix may present with a dome-shaped appearance similar to that seen with cysts on the bulbar conjunctiva.6

Patients with conjunctival cysts may present with a variety of complaints; they may also be entirely asymptomatic, depending upon the size and location of the lesion. Most often, cysts of the bulbar conjunctiva present merely a cosmetic concern.7 As they become larger, however, the likelihood of awareness and/or irritation increases. Impairment of lid closure can result in exposure and dry eye symptoms, including burning, scratching, and foreign body sensation. Large cysts within the fornices can also present as a cosmetic concern, but typically the complaint is related to perceived swelling of the eyelid.8,9 Larger cysts can also act like space-occupying lesions, potentially restricting ocular motility.6,10 Visual acuity is rarely affected.10 Conjunctival cysts may be encountered in all races, in either gender and at virtually any age. A history of prior ocular surgery may also be noted.11,12

Pathophysiology
Two distinct types of conjunctival cysts are known to occur: retention cysts and inclusion cysts.13 Although they are often depicted as synonymous in the ophthalmic vernacular, each has a unique etiology and pathophysiology.

By definition, retention cysts are produced by obstruction of a duct leading from a secreting organ, with the consequent retention of its normal secretions. In the conjunctiva, retention cysts may occur at the apex of the tarsus or fornix, and are typically associated with the accessory lacrimal glands of Krause and Wolfring.14-16 The term dacryops is sometimes used to describe this condition, although more commonly this refers to a cystic lesion affecting the ducts of the primary lacrimal gland.16,17

Inclusion cysts, as the name implies, are formed due to the inclusion of a small portion of epithelium within the connective tissue of the conjunctiva. Inclusion cysts may be congenital, but are more commonly associated with trauma, prior surgery or other inflammatory processes.9 Viable superficial epithelial cells become trapped within the underlying substantia propria; proliferation of these cells then results in a focal mass, which ultimately cavitates and forms an epithelial-lined cyst.13

Inclusion cysts have been identified in association with vernal keratoconjunctivitis, toxic keratoconjunctivitis, Stevens-Johnson syndrome, pterygia, small-incision cataract surgery, sub-Tenon’s injections, trabeculectomy, glaucoma filtering surgery and scleral buckling surgery.12,17,18,19,20 Inclusion cysts are far more common than retention cysts, representing approximately 80% of all cystic lesions affecting the conjunctiva.5,18

Management
The management of conjunctival cysts begins with proper diagnosis. It is important to differentiate these from other raised conjunctival lesions such

28 REVIEW OF OPTOMETRY JUNE 2016
Conjunctival inclusion cysts, as the name implies, are formed due to the inclusion of a small portion of epithelium within the connective tissue of the conjunctiva.

as squamous or limbal papillomas, pseudoepitheliomatous hyperplasia, pincuncular, dermoids, progonal granulomas, lymphangiomas or lymphangiectasias. Moreover, it is crucial to rule out potentially malignant lesions of the conjunctiva, such as lymphoma, ocular surface squamous neoplasia or conjunctival melanoma. Clinicians should note any characteristic features of malignancy such as rapid growth, feeder vessels or acquired variations in pigmentation. If there is any doubt as to the nature of the lesion, consultation with an experienced ophthalmic surgeon should be facilitated and biopsy obtained.

The management for symptomatic conjunctival cysts is typically surgical. Although many of these lesions could simply be addressed via benign neglect, most patients seeking consultation ultimately wish to have the condition alleviated. Based upon their appearance, it would seem that a simple stab incision would suffice; however, the reality is that a vast majority of these lesions will recur if treated with puncture/aspiration.1,2

Clinical Pearls

- Cystic inclusions are a common feature of conjunctival nevi. Studies suggest that 57% to 80% of nevi demonstrate intrinsic cysts on biomicroscopy. These may be verified by the use of anterior segment optical coherence tomography.1-26 The presence of cysts is considered an important factor in the differentiation between conjunctival nevus and conjunctival melanoma.25,26

- Conjunctival concretions, sometimes referred to as lithiasis, have been described as inclusion cysts filled with keratin (a protein constituent of epidermis and hair) and epithelial debris within the inferior and superior palpebral conjunctiva.27 Immature conjunctival concretions are often seen to have a small, cystic lesion adjacent to or overlying it.

- Lymphangiectasia is another rare condition that may mimic conjunctival cysts. These lesions represent dilation of the normal lymphatic vessels within the bulbar conjunctiva, and can manifest as either a diffuse enlargement or a linear series of small cysts.28 Lymphangiectasia may be associated with a variety of other medical disorders, most notably nephrotic syndrome, malnutrition, thyroid eye disease, cavernous sinus thrombosis and carotid-cavernous fistula.29 It is important that patients be screened for associated lymphadenopathy and undergo appropriate medical evaluation if lymphangiectasia is suspected.

MUCUS FISHING SYNDROME

Signs & Symptoms

Patients with mucus fishing syndrome (MFS) present with a chief complaint of chronic or excessive stringy discharge from one or both eyes, as well as varying degrees of accompanying ocular irritation.1-5 There may be a history of having used one or more topical agents (artificial
conjunctivitis. Examination often reveals iritis, foreign body or chronic allergic exposure keratopathy, anterior blepharitis, foreign body or chronic allergic conjunctivitis. Examination often reveals a compromised precorneal tear film, as evidenced by diminished fluorescein tear film as well.2 The application of either lissamine green or rose bengal dye reveals areas of confluent conjunctival staining, typically inferior to the cornea, or in the adjacent limbal or pericanthal regions. This vital dye staining represents areas of mechanical trauma to the bulbar and/or palpebral conjunctiva, and is considered pathognomonic for MFS. When questioned directly as to how the mucus is eliminated, patients will characteristically describe or demonstrate the physical removal of these strands using their finger, fingernail or some other implement such as a cotton-tipped applicator, cotton ball, tissue or washcloth.1,2 Paradoxically, the same patients may state emphatically that they never touch the eye. Hence, psychological factors may be at play with this condition.

Pathophysiology

MFS was first reported in 1985. At that time, the authors postulated that the condition represented the conjunctival tissue’s cyclical and progressive inflammatory response to repeated mechanical irritation in the presence of an incipient ocular surface disease state.1 In 2001, researchers suggested that, in addition to mechanical injury, the recurrent introduction of extrinsic antigens by means of the patient’s fingernail or other object might additionally stimulate mucus production via the complementary cascade, mast cell degranulation, histamine release and prostaglandin synthesis.2,3 Additional etiologic factors have yet to be considered, but the action of repeatedly removing mucus from the ocular surface or conjunctival cul-de-sac is widely believed to initiate the cascading cycle of MFS, which persist until the stimulus is removed.

Since MFS is uncommonly encountered in individuals with ocular surface disease, logic suggests that there may be another common factor in the genesis of this condition. Authors have hinted at a psychological element in patients with MFS, indicating some degree of patient embarrassment as well as a reluctance to discontinue the behavior, even when informed that the mere act of removing the mucus strands may be the main causative element in this disease.2,4 In fact, it has been speculated that MFS may represent an ocular form of obsessive-compulsive disorder.6 Management

Management of MFS must begin with patient education regarding the deleterious effects of chronic, mechanical self-removal of mucus strands.1,5 It should be clearly communicated that the condition cannot resolve fully until this habit is discontinued. Beyond this, addressing the underlying ocular surface disorder becomes paramount. Efforts should be aimed at reducing contributory ocular surface inflammation and irritating stimuli by using palliative, pharmaceutical and/or surgical treatment options.

Ocular lubricants can be helpful in flushing excess mucus from the ocular surface, in lieu of direct mechanical removal. Liberal use of nonpreserved artificial tears should be encouraged for all patients with MFS. Those who still complain of mucus accumulation may benefit from topical 5% or 10% N-acetylcysteine drops.2 N-acetylcysteine is a mucolytic agent, generally employed in the treatment of respiratory conditions such as emphysema or cystic fibrosis. It works by breaking the disulfide bridges of high molecular weight glycoproteins, resulting in diminished mucus accumulation and overall reduction of secretion viscosity.7 While not commercially available in the United States or Canada, this formulation can be obtained via a compounding pharmacist for ophthalmic use, and is typically administered four times daily for approximately one month. Should an allergic component be present or suspected, topical antihistamine/mast cell stabilizing agents (e.g., alcaftadine 0.25% once daily or bepotastine 1.5% twice daily) can be employed as well.2,3

Once the cycle has been broken, attention should be directed toward long-term management of contributory ocular surface disorders. Since dry eye disease is one of the more common etiologies of MFS, the use of topical cyclosporine 0.05% twice daily can be of benefit.8 Additional considerations include punctal occlusion and, in severe cases, autologous serum eye drops.9

Clinical Pearls

- MFS must be differentiated from factitious conjunctivitis, also known as ocular Munchausen syndrome. In this condition, patients knowingly but surreptitiously induce injury to the ocular surface for the purpose of gaining emotional attention and/or financial ben-
Giant papillary conjunctivitis (GPC) is an inflammation initiated by micro-trauma to the superior palpebral conjunctiva. It is associated with mechanical stimulation from either a contact lens, sutures or a prosthesis. Characterized by the formation of large papillae on the superior tarsal conjunctiva, GPC is similar in appearance to vernal conjunctivitis but classically without significant corneal involvement. While the condition can develop secondary to chronic exposure to either a rigid gas permeable (RGP) or soft contact lens, the complication is far more predominant with the latter. Non-silicone,ionic, lower-water, large-diameter, extended wear lenses and generic contact lens solutions have been implicated in higher rates of incidence. Poor contact lens hygiene, noncompliance with prescribed wear schedules and individual biochemistry consistent with the formation of contact lens surface deposits (jelly bumps) are known etiologies. Inspection of a contact lens, prosthesis or contact lens case will often yield telltale debris and deposits.

The symptoms of GPC occur after prolonged exposure to the lens or prosthesis and may exist in the absence of significant signs. Patients often complain of excessive mucus in the inner canthus upon awakening and coating the lens or prosthesis as the day progresses, discomfort or vision; an inordinate amount of lens or prosthesis movement; decreased comfortable wearing time; and symptoms like photophobia, itching or burning after the lens or prosthesis is removed.

The signs of GPC include superior conjunctival hyperemia with conjunctival thickening; large papillae formation; and an increase in, and the subsequent loss of, conjunctival translucence with formation of multiple, white, elevated opacities secondary to conjunctival immune cell infiltration. Papillae normally present may expand in number before enlarging to 0.5mm–1.0mm in diameter (macropapillae).

Pathophysiology
GPC is a conjunctival immune response (type IV, delayed, basophil-mediated hypersensitivity with components of a type I immediate immunoglobulin [IgE] response) to the biochemical ingredients and frictional interaction of the contact lens or prosthesis. The condition takes time to develop. A similar response of roughening of the superficial corneal layers and conjunctiva (papillae formation) has been observed after glaucoma filtration surgery. Here, as with a contact lens or prosthesis, the mechanical forces of the bleb adjacent to conjunctival tissues produce conjunctival thickening, inflammation and macropapillae formation.

In GPC, the conjunctival epithelium becomes injured or chemically irritated. In contact with the conjunctiva-associated lymphoid tissue, chemokines and chemo-attractants signal for lymphocytes from underlying lymphoid follicles to invade the conjunctival tissue.
become active. As they respond, they gather into intraepithelial "pockets," forming conjunctival epithelial invaginations, with papillae the resultant elevations. Membranous epithelial cells (M cells), designed for the binding and translocation of antigens and pathogens, play a key role in the pathogenesis of papillae. Cellular and chemical elements of the allergic response are present in GPC, but not nearly in the numbers seen in a true type I allergic reaction. Histologically, cases of GPC feature thickened conjunctival epithelium over formed papillae with abnormal conjunctival epithelial downgrowth into the conjunctival stroma.

Management

Treating GPC begins with removal (if possible) of the offending device (e.g., discontinuation of contact lens wear or removal of a prosthesis). Since GPC conjunctival tissue injury is driven by the response to aggravating agents, the recovery process begins when they are removed. Cold compresses BID may feel soothing to affected tissues and constrict blood vessels, limiting the movement and distribution of the chemical mediators of inflammation. Artificial tears can add lubrication, provide temporary ocular surface protection and flush antigens from the area.

If symptoms persist, adding topical antihistamines, mast cell stabilizers or topical nonsteroidal anti-inflammatory (NSAID) preparations may provide relief. Topical steroids may also be prescribed for symptomatic relief. Recalcitrant cases can sometimes require topical immunomodulation, and topical tacrolimus 0.03% ointment applied to the lower fornix twice a day over two to three weeks has been shown to be effective. In cases recalcitrant to therapy, papillae can be surgically resected with or without adjunctive cryotherapy, supported by amniotic membrane tissue placement over the wound.

Once the condition has been resolved, a contact lens refit can be considered with frequent replacement lens materials and solutions known to be stubborn against the formation of GPC. A reduced wearing schedule, compliance with lens replacement timing, solution selection and hygiene must all be discussed. Scleral lenses may also have an application in cases of GPC. Recently, research has investigated use of scleral contact lenses for keratoconical corneal surfaces at risk of compromise from ongoing vernal keratoconjunctivitis (VKC). Similarly, eyes with a risk of shield ulceration from severe GPC may also be protected using this modality, as the eyelid inflammation is remedied with topical therapies. Scleral lenses may be considered in patients who have developed GPC from other contact lenses.

Clinical Pearls

• GPC is an inflammatory conjunctival reaction to a contact lens, suture, bleb, prosthesis or other foreign body.

• While GPC is on the continuum of allergic conjunctivitis, it is not a true allergic conjunctivitis.

• The symptoms of an evolving GPC often precede exaggerated signs.

• Contact lens or prosthetic materials, generic cleaning and disinfecting solutions, poor contact lens or prosthesis hygiene, noncompliance with wearing schedules and delayed action for foreshadowing foreboding symptoms all play a role in the development of a full-blown event.

• Treatment begins with device removal, then topical supportive therapy (cold compresses, artificial tears), topical antihistamine drops, topical NSAIDs, topical steroids; topical immunomodulatory agents can be added in a graded fashion, depending upon the condition’s severity.

• If topical steroidal medications are used, intraocular pressure (IOP) must be monitored to rule out “steroid response” glaucoma. In the event of a pressure rise, therapy must continue. A topical aqueous suppressant can help get IOP under control.
For allergic conjunctivitis¹

THE POWER TO CALM THE ITCH

BEPREVE®—FIRST-LINE, YEAR-ROUND, WITH BROAD-SPECTRUM ALLERGEN COVERAGE

INDICATION AND USAGE
BEPREVE® (bepotastine besilate ophthalmic solution) 1.5% is a histamine H₁ receptor antagonist indicated for the treatment of itching associated with allergic conjunctivitis.

IMPORTANT SAFETY INFORMATION
· BEPREVE® is contraindicated in patients with a history of hypersensitivity reactions to bepotastine or any of the other ingredients.
· BEPREVE® is for topical ophthalmic use only. To minimize risk of contamination, do not touch the dropper tip to the eyelids or to any surface. Keep the bottle closed when not in use.
· BEPREVE® should not be used to treat contact lens-related irritation. Remove contact lens prior to instillation of BEPREVE®. Lenses may be reinserted 10 minutes after BEPREVE® administration.
· The most common adverse reaction occurring in approximately 25% of patients was a mild taste following instillation. Other adverse reactions occurring in 2%-5% of patients were eye irritation, headache, and nasopharyngitis.

Please see the accompanying full Prescribing Information for BEPREVE® on the following page.

© Bausch & Lomb Incorporated. BEP.0014.USA.18

For product-related questions and concerns, call 1-800-323-0000 or visit www.bausch.com.
BEPREVE® (bepotastine besilate ophthalmic solution) 1.5%

HIGHLIGHTS OF PRESCRIBING INFORMATION
These highlights do not include all the information needed to use BEPREVE® (bepotastine besilate ophthalmic solution) 1.5% safely and effectively. See full prescribing information for BEPREVE®.

BEPREVE® (bepotastine besilate ophthalmic solution) 1.5%
Initial U.S. Approval: 2009

--- NEWER MAJOR CHANGES ---

--- INDICATIONS AND USAGE ---
BEPREVE® is a histamine H1 receptor antagonist indicated for the treatment of itching associated with allergic conjunctivitis.

--- DOSAGE AND ADMINISTRATION ---
Instil one drop of BEPREVE® into the affected eye twice a day (BID). (2)

--- DOSAGE FORMS AND STRENGTHS ---
Solution contains bepotastine 1.5%, 8 mg/mL.

--- CONTRAINDICATIONS ---
Hyersensitivity to any component of this product. (4)

FULL PRESCRIBING INFORMATION CONTENT
1 INDICATIONS AND USAGE
BEPREVE® (bepotastine besilate ophthalmic solution) 1.5% is a histamine H1 receptor antagonist indicated for the treatment of itching associated with allergic conjunctivitis.

2 DOSAGE AND ADMINISTRATION
Instil one drop of BEPREVE into the affected eye twice a day (BID). (2)

--- DOSAGE FORMS AND STRENGTHS ---
Topical ophthalmic solution containing bepotastine besilate 1.5%.

--- CONTRAINDICATIONS ---
Bepotastine besilate is contraindicated in patients with a history of hypersensitivity reactions to bepotastine or any of its components. (See Adverse Reactions (6.1)).

5.1 Contamination of Tip and Solution
To minimize contaminating the dropper tip and solution, care should be taken not to touch the eyelids or surrounding areas with the dropper tip of the bottle. Keep bottle tightly closed when not in use.

5.2 Contact Lens Use
Patients should be advised not to wear contact lenses if their eye is red. BEPREVE should not be used to treat contact lens-related irritation.

BEPREVE should not be instilled while wearing contact lenses. Remove contact lenses prior to instillation of BEPREVE. The preservative in BEPREVE, benzalkonium chloride, may be absorbed by soft contact lenses. Lenses may be reininserted after 10 minutes following administration of BEPREVE.

5.3 Topical Ophthalmic Use Only
BEPREVE is for topical ocular use only.

6 ADVERSE REACTIONS
6.1 Clinical Trials Experience
BEPREVE is for topical ophthalmic use only. BEPREVE contains benzalkonium chloride, which may be absorbed by soft contact lenses. Lenses may be reininserted after 10 minutes following administration of BEPREVE.

6.2 Post Market Experience
Hypersensitivity reactions have been reported rarely during the post-marketing use of BEPREVE. Because these reactions are reported voluntarily from a population of unknown size, it is not always possible to reliably estimate their frequency or establish a causal relationship to drug exposure. The hypersensitivity reactions included: conjunctivitis, urticaria, rash, pruritus and tearing.

8 USE IN SPECIFIC POPULATIONS
8.1 Pregnancy
Teratogenicity studies have been performed in animals. Bepotastine besilate was not found to be teratogenic in rats during organogenesis and fetal development at oral doses up to 200 mg/kg/day (representing a systemic concentration approximately 3,300 times the anticipated concentration for topical ocular use in humans), but did show some potential for causing skeletal abnormalities at 1,000 mg/kg/day. There were no teratogenic effects seen in rabbits at oral doses up to 500 mg/kg/day given during organogenesis and fetal development (>1,000 times the dose in humans on a mg/kg basis). Evidence of infertility was seen in rats given oral bepotastine besilate 1,000 mg/kg/day; however, no evidence of infertility was observed in rats given 200 mg/kg/day (approximately 3,300 times the anticipated oral concentration in humans) of bepotastine besilate. Plasma concentration at 24 hours post-instillation. Maximum plasma concentration anticipated for topical ocular use in humans.

15 CLINICAL STUDIES
Clinical efficacy was evaluated in 2 conjunctival allergen challenge studies (27 patients). BEPREVE (bepotastine besilate ophthalmic solution) 1.5% was more effective than its vehicle for relieving ocular itching induced by an ocular allergen challenge, both at a CAC 15 minutes post- dusting and a CAC 2 hours post-dusting of BEPREVE. The safety of BEPREVE was evaluated in a randomized clinical study of 861 subjects over a period of 9 weeks.

16 HOW SUPPLIED/STORAGE AND HANDLING
BEPREVE (bepotastine besilate ophthalmic solution) 1.5% is a sterile, topically administered drug for ophthalmic use. Each mL of BEPREVE contains 15 mg bepotastine besilate. Bepotastine besilate is designated chemically as +)-4-[3-[2-chloro-3-pyridyl(benzyl)]-1-piperidine butyric acid monobenzenesulfonate. The chemical structure for bepotastine besilate is:

Bepotastine besilate is a white or pale yellowish crystalline powder. The molecular weight of bepotastine besilate is 547.06 daltons. BEPREVE (bepotastine besilate ophthalmic solution) is supplied as a sterile, aqueous 1.5% solution, with a pH of 8.2. The osmolality of BEPREVE (bepotastine besilate ophthalmic solution) 1.5% is approximately 210 mOsm/mL. Each mL of BEPREVE (bepotastine besilate ophthalmic solution) 1.5% contains: Active: Bepotastine besilate 15 mg (equivalent to 10.7 mg bepotastine). Preservative: benzalkonium chloride 0.005%. Inactive: mono-basic sodium phosphate dihydrate, sodium chloride, sodium hydroxide to adjust pH, and water for injection, USP.

17 PATIENT COUNSELING INFORMATION
17.1 Topical Ophthalmic Use Only
For topical ophthalmic administration only.

17.2 Sterility of Dropper Tip
Patients should be advised to not touch dropper tip to any surface, as this may contaminate the contents.

17.3 Concomitant Use of Contact Lenses
Patients should be advised not to wear a contact lens if their eye is red. Patients should be advised that BEPREVE should not be used to treat contact lens-related irritation.

Patients should also be advised to remove contact lenses prior to instillation of BEPREVE. The preservative in BEPREVE, benzalkonium chloride, may be absorbed by soft contact lenses. Lenses may be reininserted after 10 minutes following administration of BEPREVE.

Manufactured by: Bausch & Lomb Incorporated Tampa, FL 33607

US/BEP/130328 4/13
ACANTHAMOEBA KERATITIS

Signs and Symptoms
Corneal infection by Acanthamoeba is a rare occurrence. Patients are most often soft contact lens wearers, although this is not universal; additional historical elements may include recent ocular trauma and exposure to soil or contaminated water.1,9 Acanthamoeba keratitis may also be seen following ocular surgery.1,10,11

The onset of Acanthamoeba keratitis is typically insidious rather than acute, with a unilateral red eye being the characteristic presentation. Pain is the most commonly reported symptom, often in tandem with photophobia, tearing and blepharospasm. In early stages of infection, pain is often severe and seemingly disproportionate to clinical appearance; however, patients may present with little or no pain, particularly as the disease progresses.1,13,12 Reduced visual acuity is common and directly related to the degree of corneal compromise, which is in turn related to the stage of the disease.

Biomicroscopy reveals generalized conjunctival hyperemia with a propensity for limbitis—an inflammation of the corneoscleral junction. A wide array of corneal manifestations can be seen with Acanthamoeba keratitis, depending upon the stage of the infection. Early epithelial involvement may take the form of punctate keratopathy, pseudodendritic keratopathy, microcystic edema and/or epithelial infiltrates.1,3,7,13 As the infection progresses, additional corneal findings could include subepithelial and perineural infiltrates. The finding of perineural infiltrates (also known as radial perineuritis or radial keratoneuritis) is considered the most pathognomonic sign for mid-stage Acanthamoeba keratitis, noted in up to 63% of cases.3 Stromal ring infiltrate has been described as the classic sign of Acanthamoeba infection. This is true with regard to late-stage disease, but overall ring infiltrate is noted in less than 20% of patients.1,3,13

Other late-stage findings include frank corneal ulceration, disciform corneal edema, endothelial plaques and abscess formation. At this stage, anterior uveitis is also common, often with associated hypopyon. Complications in untreated cases may include corneal melt, corneal perforation, scleritis, cataract and glaucoma.3

Pathophysiology
Acanthamoeba are ubiquitous organisms, inhabiting virtually all sources of water, including lakes, rivers, oceans, chlorinated swimming pools, hot tubs and domestic tap water.7 In addition, these pathogens can be borne in soil, dust, sewage and even air.1 Acanthamoeba are resistant to cold, surviving at temperatures as low as –20º C (–4º F); however, they are typically susceptible to heat above 42º C (107º F).7 Under adverse conditions, Acanthamoeba transition from their motile trophozoite phase to a cystic phase, in which they can survive and maintain their virulence for years.5 Eight species of Acanthamoeba have been associated with keratitis, but Acanthamoeba castellani and Acanthamoeba polyphaga are by far the most common.1,3

The critical first step in the pathogenesis of Acanthamoeba keratitis, as with all corneal infections, is introduction and adhesion of the microbe to the ocular surface. Contact lenses are believed to act as a mechanical vector, aiding the transmission of Acanthamoeba to the cornea from contaminated media.8 In addition, contact lenses induce microtrauma to the corneal epithelium, allowing for easier access by these pathogens.6 Direct injury to the cornea (e.g., corneal abrasion) and concurrent or subsequent exposure to contaminated materials are other potential avenues for infection. Pathogenic Acanthamoeba appears to be mediated by mannose-binding protein (MBP), which facilitates adhesion of the organism to the epithelium.4,14 Once bound, MBP directs a potent cytopathic effect on the cornea. Release of multiple proteases allows for degradation of the epithelial basement membrane and penetration of the organism deep into the stroma, causing cell death via cytolsis, phagocytosis and apoptosis.5,9 Trophozoites then tend to cluster around corneal nerves, resulting in clinically observed perineuritis.9,13 Inflammatory and infiltrative processes ensue, producing the myriad of signs discussed previously. Unfortunately, this response is incapable of fully eradicating Acanthamoeba infection in the immune-privileged cornea; thus, aggressive medical therapy is required.

Management
Definitive diagnosis of Acanthamoeba infection can be difficult and time-consuming. It requires tissue samples from the involved eye that, despite multiple diagnostic techniques, yield a high number of false-negative results. Typical testing involves the staining and culture of corneal scrapings. Smear samples can be evaluated by microscopy using various stains, although the most common today appear to be acridine orange and calcofluor white.5,9 Corneal cultures are typically performed using non-nutrient agar overlaid with Escherichia coli or Enterobacter aerogenes.1,3,5,7,9 These cultures are usually evaluated daily for up to 10 days, as it may take that long to observe a definitive yield.5 Still, the effectiveness of isolating Acanthamoeba in cultures is reportedly only 30% to 60%.3,9
Polymerase chain reaction (PCR) is sometimes used in the analysis of corneal samples. PCR is useful for detecting pathogens that are difficult to culture in vitro, or which require a long cultivation period such as Acanthamoeba. Unfortunately, the process is highly technical and expensive, and, consequently, not widely available outside of specialized tertiary care centers or academic medical institutions. Confocal microscopy enables noninvasive, real-time corneal evaluation at the cellular level, and is capable of demonstrating cysts and trophozoites in infected corneas. While confocal microscopy is an important addition to the diagnosis of Acanthamoeba keratitis, cost and lack of standardized interpretation preclude its widespread use.

Therapeutic management of Acanthamoeba keratitis is complex and challenging. Trophozoites are responsive to a variety of medications, including certain antibiotics, antiseptics, antifungals, antiproteozoaals, antivirals and antineoplastic drugs. Acanthamoeba cysts, though, are susceptible to just a few select agents, particularly the biguanides and diamidines. The treating physicians will often initiate two or more concurrent medications at the outset of therapy. A typical starting regimen involves a biguanide, such as polyhexamethylene biguanide (PHMB) 0.02% or chlorhexidine 0.02%, in combination with a diamidine, such as propamidine isethionate (Brolene, Sanofi) 0.1% or hexamidine 0.1%. These are dosed every hour around the clock for the first 48 hours following corneal debridement, then reduced to hourly (daytime only) for one or more weeks. Corneal toxicity is not uncommon, particularly with the diamidines, and should be a consideration in discontinuation or modification of the regimen. Oral itraconazole is sometimes advocated as adjunctive therapy, although this is not universal. In general, the goal is to reduce administration of topical medications to approximately four times a day, but therapy may be required for months to ensure eradication of encysted organisms.

As with most cases of microbial keratitis, topical corticosteroid use in Acanthamoeba keratitis is highly controversial, particularly during the active phase. Evidence exists that corticosteroids may accelerate proliferation of trophozoites, increasing cytopathic effects. Also, steroids appear to inhibit macrophage phagocytosis and the destruction of Acanthamoeba cysts by neutrophils. A recent study linked use of topical corticosteroids prior to definitive diagnosis of Acanthamoeba keratitis with a fourfold increase in the likelihood of suboptimal outcome (VA <20/80, corneal perforation or need for keratoplasty). However, another study showed that use of topical steroids in conjunction with antiamoebic therapy did not increase the risk of suboptimal outcome.

The current literature consensus on a protocol appears to be avoidance of topical corticosteroids for at least two weeks after diagnosis and initiation of aggressive antiamoebic treatment; if, at that point, significant inflammatory complications are present (e.g., anterior scleritis, severe pain, indolent ulcers, corneal inflammation and/or anterior uveitis), a steroid may be added. Likewise, authors recommend that antiamoebic therapy be continued for several weeks after steroids are stopped. Clinicians need to be watchful for persistent epithelial defects in Acanthamoeba keratitis, which may be indicative of drug toxicity, concurrent herpes infection, bacterial superinfection or resistant Acanthamoeba strains. Repeating cultures can help rule out the latter two of these etiologies. In cases unresponsive to medical therapy alone, lamellar keratectomy of the necrotic tissue may be a beneficial therapeutic adjunct. Published case reports also suggest that corneal collagen crosslinking and phototherapeutic keratectomy may be of benefit in the management of Acanthamoeba keratitis, but, to date, no large-scale prospective clinical studies have examined either modality. While penetrating keratoplasty (PK) is no longer considered a viable means of eradicating Acanthamoeba from the cornea, it remains a therapeutic consideration for corneal perforation unresponsive to repeated gluing, significant cataract or severe corneal abscess. PK may also be employed in quiescent eyes after treatment has been completed to address scarred or irregular corneas as a means of improving vision.

The prognosis for individuals with Acanthamoeba keratitis depends largely on the severity of the disease at presentation and the amount of time prior to initiating therapy. Initial visual acuity below 20/50 and stromal infiltration is associated with a worse prognosis. Likewise, a delay in initiating antiamoebic therapy of more than three weeks is associated with a worse prognosis. In a series of 229 cases seen over 12 years at Moorfields Eye Hospital, 65.5% achieved final visual acuity of 20/20 or better in the involved eye, and 96% overall were 20/40 or better following successful treatment.

Clinical Pearls
- The primary food source for Acanthamoeba is bacteria, including normal ocular flora such as Staphylococcus epidermidis and S. aureus. Hence, these organisms can persist indefinitely in a bacteria-rich ocular environment. For this reason, bacterial corneal ulcers are always susceptible to superinfection by Acanthamoeba in at-risk patients, particularly contact lens wearers.
- Although rare, Acanthamoeba keratitis should be suspected in several specific instances: cases involving contact lens wear, particularly when improper lens care and hygiene are apparent; corneal trauma associated with soil or unclean water sources; patient reports of pain that is extreme and disproportionate to the
Acanthamoeba keratitis treated with phototherapeutic kera-
Acanthamoeba keratitis: a case report. Case Rep
25. Kendori M, House T, Shimobukuro M, et al. Four cases of
Acanthamoeba keratitis treated with phototherapeutic kera-
23. Chan E, Snibson GR, Sullivan L. Treatment of infectious
bic therapy on the outcome of Acanthamoeba keratitis.
21. Alam II, Mahajan N, Kapoor A. Acanthamoeba keratitis:
between topical acyclovir and riboflavin in the treatment
19. Roshab D, Cant N, Masselink DC, et al. The impact of
topical corticosteroids use before diagnosis on the outcome
of Acanthamoeba keratitis. Ophthalmology. 2014;121(7):1380-
8.
serum IgG antibodies against Acanthamoeba in patients with
steroids on Acanthamoeba cysts and trophozoites. Invest
16. Yamamoto Y. PCR in diagnosis of infection: detection of
15. Clarke DW, Niederkorn JY. The pathophysiology of
nicity of Acanthamoeba is associated with the expression
13. Patel DV, McGhee CN. Acanthamoeba keratitis: a com-
prehensive photographic reference of common and uncom-
tions for acanthamoeba keratitis. Cochrane Database Syst
Rev. 2015;2(CD010792).
11. Joslin CE, Tu EY, Shoff ME, et al. The association of
contact lens solution use and Acanthamoeba keratitis. Am J
10. Kaldawy RM, Sutphin JE, Wagoner MD. Acanthamoeba
keratitis after photorefractive keratectomy. J Cataract Refract
9. Maycock NJ, Jayaswal R. Update on Acanthamoeba
8. Hurt M, Howard K, Cavanagh HD, et al. Tear IgA and
serum IgG antibodies against Acanthamoeba in patients with
7. Chong BM, Dana MR. Acanthamoeba keratitis. Int
in mitigating pain and associated uveitis.
of the external eye: Microbial and parasitic infections. In:
Skuta GL, Cantor UB, Weiss JS, eds. External disease and
cornea. Volume II. San Francisco: American Academy of
4. Panjwani N. Pathogenesis of acanthamoeba keratitis. Ocul
3. Datt JK, Sae W, Khivngton S. Acanthamoeba keratitis:
of the external eye: Microbial and parasitic infections. In:
Skuta GL, Cantor UB, Weiss JS, eds. External disease and
cornea. Volume II. San Francisco: American Academy of

keratitis can present initially as a pseudodendritic keratitis
similar to herpes simplex keratitis, with
one critical exception: the classic “terminal end bulbs” seen in herpetic keratitis are characteristiclly absent.

Acanthamoeba keratitis is partially amenable to non-protozoan treatments, including some topical antibiotics (e.g., neomycin) and antiviral agents. These formulations, as well as the preservatives that they contain, create a hostile envir-

onment for the microbe; in response, Acanthamoeba will encyst and become dormant. While symptoms and signs may improve temporarily, the keratitis waxes and wanes until definitive anti-
amoeba therapy is prescribed.

Cycloplegia is another component in mitigating pain and associated uveitis.

TOXIC KERATOCONJUNCTIVITIS

Signs and Symptoms

Toxic keratoconjunctivitis (TKC), sometimes referred to as chemical keratitis or toxic follicular conjunctivitis, describes a condition in which the ocular surface is exposed to a noxious substance either acutely or chronically, with resultant deleterious effects to the structure and function of these tissues.5, 6 Often, patients will have knowledge of the offending agent, reporting a history of inadvertent (e.g., splashing of a cleaning agent) or purposeful (e.g., instillation of a topical medication) ocular contact. Other patients may present with an unexplained painful red eye, oblivious to a causative vector until the history is explored. TKC may be observed unilaterally or bilaterally, and can affect any individual regardless of age, race or gender. Patients commonly present with some degree of ocular discomfort, which may manifest as itching, burning, photophobia, foreign body sensation or discrete pain. Blurred vision and excessive tearing are also frequently reported.

TKC may impact the cornea, bulbar conjunctiva and/or palpebral conjunctiva, and occasionally presents with collateral involvement of the eyelids and adnexa.1 Characteristic conjunctival manifestations include hyperemia, often with chemosis (conjunctival edema). In some cases, where the exposure is diffuse, the palpebral conjunctiva swells 360 degrees around the cornea, mimicking a watch’s bezel around the crystal. This is sometimes referred to as “watch glass” edema. Papillary and/or follicular reactions may also be seen, but typically only in cases involving chronic exposure to irritant substances.7 The classic corneal finding in TKC is a coarse punctate epitheliopath that stains brightly with sodium.
Filamentary keratopathy or pseudodendrites may also be seen. Pseudodendrites are most classically associated with herpes zoster ophthalmicus, so the history and presentation of the lids and adnexa are important features for differential diagnosis. More prolonged or severe exposure can lead to the development of persistent epithelial defects, corneal edema, ulcerative keratitis, stromal melting and corneal perforation. The lids and adnexa occasionally demonstrate a hypersensitivity reaction similar to atopic dermatitis, with eczema, edema and erythema of the periorcular skin.

Pathophysiology

The pathophysiology of TKC is complex, involving a variety and, in some cases, a combination of mechanisms. The type of response may differ depending upon the nature of the substance or solution involved. Direct cytotoxicity to the cornea and/or conjunctiva often results from extremes in pH or osmolality; in rare instances, exposure can induce a photosensitivity reaction. Some organic substances contain bioactive proteins and proteolytic enzymes, which can have significant local destructive effects at the level of the epithelium or stroma. Direct toxic effects are usually seen upon initial contact or within hours thereafter. Exposure to toxic substances may also evoke an inflammatory response via immunologic pathways. This may take the form of either a type I hypersensitivity (initiated by allergen binding and degranulation of mast cells), type II to III hypersensitivity reaction (characterized by antibody–specific and immune–complex mediated effects) or a type IV hypersensitivity reaction, also known as delayed or adaptive hypersensitivity reaction (involving T-lymphocytes and lymphokines that become activated when a sufficient volume of antigen stimulates the system). A type IV reaction may take one exposure or 100 exposures. Topical medications and the preservatives used to formulate them represent the most common source of TKC (the term *medicinaeae* is sometimes used to describe this phenomenon). While we collectively refer to these reactions as toxic, in many cases the pathogenic event is primarily immune-mediated via type I or type IV hypersensitivity reactions, rather than the result of direct toxicity.

While a broad range of topical agents may induce TKC, a few are well known in this capacity, including: amnioglycoside antibiotics (especially neomycin and gentamicin), fluoroquinolone antibiotics (particularly ciprofloxacin), intraocular pressure-lowering medications (especially timolol and dorzolamide), nonsteroidal anti-inflammatory drugs (NSAIDs, particularly diclofenac) and topical anesthetics, though typically only in instances where they are overused or abused. Ophthalmic preservatives such as thimerosal and benzalkonium chloride (BAK) have also been widely implicated in TKC. While thimerosal has been removed from most commercially available ocular medications and contact lens solutions in the United States, a few products still incorporate this potentially toxic, mercurial compound (e.g., Viroptic [Pfizer] and Neosporin ophthalmic solution [Monarch Pharmaceuticals]). BAK is presently the most common preservative employed in ophthalmic medications, despite its recognized potential for hypersensitivity. Using an animal model, researchers have shown that BAK breaks down rabbit corneal epithelial barrier function in a dose-dependent fashion; with high concentrations and/or prolonged exposure, it induces stromal edema and endothelial cell damage.

TKC may also be the result of caustic substances entering the eye through unintentional or undesired means. These substances range from common household agents (e.g., chlorine, ammonia, alcohol or kerosene) to weaponized chemicals (e.g., pepper spray [oleoresin capsicum] or tear gas [ortho-chlorobenzylidene malononitrile]), and toxic secretions produced by animals and plants (e.g., cobra venom, toxins from marine coral, sap of the *Dieffenbachia* plant). These agents are less likely to induce a simple allergic (type I) reaction and more likely to result in epithelial cell damage from direct toxicity. Secondary inflammatory effects follow, potentially leading to scar formation.

Management

The management objectives in TKC are essentially the same as in any instance of chemical trauma to the eye: identification and elimination of the causative agent, mitigation of damage to ocular surface tissues and implementation of strategies to diminish symptomology.

Individuals who experience an acute chemical exposure should be instructed to identify the substance and proper removal strategy for accidental exposure to the eye. Copious water lavage is not always the correct course of action; some chemicals such as aluminum bromide or potassium hydroxide react violently to water, stripping the oxygen from the hydrogen, releasing heat and potentially inducing further injury. In the event the acute injury calls for water lavage, and the patient has called the office, instruct the patient to copiously lavage the eye(s) for at least 30 minutes by placing their face down into their water-filled cupped hands, blinking profusely to effect the rinse. This should be done before coming to the office so as not to prolong exposure. This technique also ensures that the chemical or agent is removed without contaminating the patient’s clothing or risking exposure to other body locations. Upon presentation, irrigation can be augmented in the office by using a sterile eye wash applied forcefully and directly to all surfaces, or by flushing the eye with a sterile, intravenous saline solution run through a Morgan Lens apparatus (MorTan).
In chronic TKC, the most important aspect of management is recognizing and discontinuing the substance responsible for the reaction. A thorough review of all topical agents used by the patient should be conducted, including prescription and OTC formulations. Once identified, a suitable alternative should be sought for any chronic-use product (e.g., intraocular pressure-lowering medications, contact lens solutions, etc.). Wherever possible, use of nonpreserved or alternatively preserved options should be considered.

Therapeutically, mild cases of TKC may be addressed with cold compresses and lubricating drops or ointments to help soothe and protect the ocular surface. Use of nonpreserved agents is preferred for this population. Topical antihistamine/mast cell stabilizers (e.g., alcaftadine 0.25% QD or bepotastine besylate 1.5% BID) may help address the itching, redness and swelling of ocular tissues associated with type I hypersensitivity reactions. For presentations that demonstrate a significant inflammatory component in the form of conjunctival and/or corneal edema, conjunctival follicles, generalized punctate keratopathy or anterior uveitis, topical steroids (e.g., loteprednol etabonate 0.5% or prednisolone acetate 1%) may be of significant benefit. Dosing of topical steroids varies with the severity of the inflammatory response, but in most cases therapy can be initiated four times per day. The use of a prophylactic topical antibiotic (e.g., moxifloxacin 0.5% TID or besifloxacin 0.6% TID) may be prudent in cases of severe keratopathy or corneal erosion.

Acute pain should be addressed first with an appropriate cycloplegic (e.g., atropine 1% BID). Topical NSAIDs (e.g., bromfenac 0.09% QD or ketorolac tromethamine 0.5% QID) can also help ameliorate associated pain; however, the clinician should note that these agents have a potential for toxicity in their own right, and employing them in this capacity represents an “off-label” use. If topical agents are insufficient to control discomfort, use of oral analgesics (e.g., tramadol hydrochloride 50mg to 100mg PO Q four to six hours, or acetaminophen/hydrocodone bitartrate 325mg/5mg, one to two tabs PO Q four to six hours) is recommended. Finally, to facilitate healing as well as reduce discomfort for diffuse and severe cases, bandage contact lenses can be used.

Severe corneal compromise in the form of ulcerative keratitis or corneal melting warrants aggressive therapy. Referral to a fellowship-trained corneal specialist is strongly advised.

Clinical Pearls

• Diagnosis of TKC is often based more upon the history and disease course than the actual clinical presentation.

• TKC can appear similar to other conditions including dry eye disease, allergic conjunctivitis and epidemic keratoconjunctivitis. TKC should always be in the differential diagnosis when the patient reports initiation of a new eye drop, cosmetic agent or contact lens product during the prior three weeks.

• The absence of a palpable preauricular node is of significant value in differentiating TKC from infectious ocular disorders such as viral conjunctivitis.

• Mild cases of TKC will typically resolve within eight days regardless of treatment, providing that the offending agent is discontinued. However, liberal use of topical lubricants greatly facilitates ocular surface restoration and improves patient comfort.

• Topical steroids and antibiotics may be required concurrently in advanced cases. Some clinicians prefer the convenience of combination antibiotic/steroid preparations over separate agents.

• Amniotic membrane transplantation has been shown to be of great value in preventing debilitating vision loss for the most severe cases of TKC.

• Toxic substances of terrorism, such as mustard gas, may necessitate the use of the national poison control system. If circumstances surrounding exposure are suspicious, the patient should be quarantined and authorities called immediately after first aid has been dispensed.

VORTEX KERATOPATHY & HURRICANE KERATOPATHY

Signs and Symptoms

Vortex keratopathy, also known as corneal verticillata, describes a unique presentation of corneal deposition in a classic arborizing or whorl-shaped pattern. The condition occurs secondary to exogenous medications or systemic disease. 1-10

Hurricane keratopathy—a term that is sometimes used synonymously but erroneously for vortex keratopathy—represents a physiological phenomenon with a similar whorled presentation that may be seen (especially with the addition of fluorescein dye) in specific instances, such as following penetrating keratoplasty.11

Patients with vortex keratopathy may be entirely asymptomatic, with the condition noted fortuitously upon routine ocular exam. Up to 40% of patients may complain of glare or mild difficulties perceiving color when questioned directly; halos and cloudy or reduced vision have also been reported, though less commonly.2,3,5,6,12

Ocular discomfort is rare except in advanced cases, in which the pigment may assume cystic formations and rupture, leading to pronounced pain and the potential for abscess.3

Vortex keratopathy is predominantly associated with systemic drug therapy, most notably amiodarone.1,10 Other known agents that can induce this condition include atovaquone, AZD9291, chloroquine, chlorpromazine, hydrochloroquine, indomethacin, meperidine, suramin, tamoxifen, tilorone hydrochloride and vandetanib.1,4,5,8,10,13-15 Alternatively, vortex keratopathy may be seen in some systemic lipid storage diseases, most notably Fabry disease.8,16,17

In this report, symptoms associated with hurricane keratopathy consisted of mild ocular irritation, foreign body sensation, lacrimation, photophobia and slight blurring of vision.11 The subjects in this series had a history of penetrating keratoplasty or rigid contact lens wear.11

A 1993 study involving six subjects with hurricane keratopathy, none of whom had undergone ocular surgery but 83% of whom were using long-term topical steroids for a variety of anterior segment disorders,19 In the vast majority of these patients, the whorl pattern was located centrally in the cornea and had a clockwise orientation.11,17 The fine lines of the vortex pattern were visible by slit-lamp exam as white epithelial lines, but were more readily identifiable after the addition of 2% sodium fluorescein. About 25% of patients displayed a small epithelial defect at the apex of the vortex.11

Pathophysiology

Vortex keratopathy results from intralysosomal accumulation of material within basal corneal epithelial cells, forming lipid-bearing inclusion bodies.10,13 The characteristic whorl-shaped pattern is believed to arise from the centripetal migration of deposit-laden limbal epithelial cells.20 This reflects the normal pattern of cell replication and movement from the limbal stem cells circumferentially around the cornea.19,20 Drugs that are associated with vortex keratopathy, while having diverse pharmacologic

Vortex keratopathy describes a unique presentation of corneal deposition in a classic arborizing or whorl-shaped pattern.
actions, typically possess cationic, amphiphilic (i.e., both hydrophilic and lipophilic) properties. This allows them to penetrate lysosomes, where the drugs and/or their metabolites bind with cellular lipids.\(^{10}\) The resultant complexes are too large to be extruded from the cells and/or are resistant to enzymatic degradation. This phenomenon is not unique to the cornea; in fact, many of these drugs may also be associated with patterned deposition affecting the lens and macula. A loose association with optic neuropathy has also been reported.\(^{13,21}\)

The pathogenesis of corneal verticillata in Fabry disease is similar. Fabry is a hereditary, X-linked disorder that leads to deficient production of the lysosomal enzyme alpha-galactosidase.\(^ {16,17}\) An absence of this enzyme leads to subsequent accumulation of glycosphingolipids (primarily globotriaosylceramide) in cells throughout the body.\(^ {17,22}\) This substance is deposited by limbal blood vessels and accumulates within the epithelial basement membrane, but spares the stroma and endothelium.\(^ {23}\) As is the case with systemic drug therapy, Fabry disease can also affect other ocular structures, most notably the lens, conjunctiva and retina.\(^ {17}\)

Hurricane keratopathy likely represents an exaggerated presentation of the migration path taken by corneal epithelial cells undergoing normal replication. This process is not generally apparent to biomicroscopic exam. However, the migration during states of increased replicative epithelial turnover is significantly more rapid, and tight intercellular adhesions may not form as readily.\(^ {11}\) This in turn permits fluorescein to penetrate between cells or groups of cells, highlighting the pattern.\(^ {19}\) Penetrating keratoplasty and the use of rigid contact lenses are the most commonly reported predisposing factors, while the concurrent or subsequent use of topical steroids appears to hasten and amplify the effect.\(^ {12,19}\) While researchers are unclear as to why cells consistently migrate in this clockwise, vortex pattern, the most widely held theory is that it reflects the influence of inherent electromagnetic fields of the eye on the replicating epithelium.\(^ {11,19,20}\)

Management

In general, no medical or surgical treatments exist for vortex keratopathy or hurricane keratopathy. The whorl pattern observed in both conditions will persist as long as the pathological process driving it endures. Drug-induced vortex keratopathy is, in most cases, fully reversible upon cessation of the drug, although it may take many months for complete resolution.\(^ {8,13}\) However, since this phenomenon is rarely sight-threatening, it would be ill-advised to discontinue any medication that has effectively managed a serious systemic malady. This is typically the case with amiodarone; cessation should not even be suggested unless visual function is severely compromised. At most, decreasing the regimen to a lower dose may be considered upon consultation and approval by the managing physician. Unfortunately, the vortex keratopathy encountered in inherited lysosomal storage disorders such as Fabry disease is progressive and irreversible.\(^ {13}\)

Hurricane keratopathy is transient in nearly all cases, and resolution often hastens with discontinuation of topical steroids as well as the use of topical lubricants.\(^ {11}\)

For patients with irritating glare from these keratopathies, spectacle lenses with a neutral tint can often alleviate symptoms. Refractive errors should be fully corrected to maximize potential visual acuity. Ocular surface irregularities may be addressed with unpreserved artificial tears or ointments as needed to improve comfort and tear stability.

Clinical Pearls

- While vortex keratopathy is a unique clinical diagnosis, it must be differentiated from other pigmented corneal phenomena. These include: *Stocker’s line* (hemosiderin line noted at the leading edge of a longstanding pterygium), *Hurricane keratopathy* (corneal epithelial iron deposition on the lower third of the cornea secondary to normal aging or excessive interaction with the lower eyelid and the tear lake), *Kayser-Fleischer ring* (limbal copper deposition in Descemet’s membrane secondary to Wilson’s disease), *Fisher’s ring* (corneal epithelial deposit at the base of a cone in keratoconus) and *Ferry’s line* (corneal epithelial iron deposit at the edge of a filtering bleb).
- Because vortex keratopathy is directly associated with specific medications or grave systemic disorders, a thorough medical and drug history is obligatory whenever it is seen or suspected.
- In addition to Fabry disease, corneal verticillata has been noted in association with multiple myeloma—a highly malignant form of cancer that involves plasma cells (mature B cell lymphocytes) and typically arises in the bone marrow.\(^ {5}\)
- Vortex keratopathy is not the only ocular sign associated with Fabry disease. Because the vascular system is greatly impacted by glycosphingolipid deposition, acquired tortuosity of the conjunctival and retinal vessels is quite common.\(^ {17}\) These patients may also be predisposed to retinal vaso-occlusive disorders such as branch and central retinal vein occlusion, branch and central retinal artery occlusion, and chorioretinal artery occlusion.\(^ {24,27}\)

Keratoconus is the most common cause of degenerative corneal ectasia worldwide and the single most common reason for keratoplasty in the developed world. It is a non-inflammatory pathology wherein the cornea aberrantly assumes a cone shape, leading to corneal protrusion, tissue thinning, myopia, irregular astigmatism, metamorphosis and vision impairment. Keratoconus affects all ethnic groups and both genders, surfacing in the second decade of life. One report in recent literature recognized that individuals of African and Latino descent had adjusted odds indicating a statistically higher likelihood of being affected than their Caucasian counterparts. Other conditions found to have increased odds of producing keratoconus include those suffering from sleep apnea, asthma and Down’s syndrome. The same paper reported that individuals of Asian descent had reduced odds of being affected compared to Caucasian counterparts. Other individuals who had statistically lower odds of being affected with keratoconus compared to age-matched normals were individuals with uncomplicated diabetes mellitus, individuals with diabetes whose disease was complicated by end-organ damage and individuals afflicted by collagen vascular disease.

Environmental factors (ocular allergy with chronic eye rubbing), inflammation, corneal scarring and genetics are documented contributors to pathogenesis. Some researchers have suggested a slightly higher prevalence in cooler climates that receive less sunlight in patients with Down’s syndrome and in patients with tapetoretinal degenerations. Family-based linkage studies, twin studies, genetic mutation and genome-wide association studies have all supported the notion that, at the least, genetic components are common.

The prevalence of keratoconus varies worldwide from 0.3/100,000 in Russia to 2,300/100,000 in central India; the overall average incidence rate in the United States has been estimated at 2.0/100,000 with a prevalence rate of 54.5/100,000 population. The disease may be unilateral but is typically bilateral. The disease has a progressive and varied course through the fourth decade of life. The most familiar ocular manifestation of keratoconus is corneal steepening or “cone” formation. Corneal steepening with tissue thinning at the apex of the cone creates topographic geometries that include the vertical bowtie pattern, the inferotemporal global cone pattern and the inferotemporal temporal cone pattern (seen more commonly in older patients). Temporal cone location is most common in younger patients. Corneal protrusion can be seen on profile and in creating the classic Munson’s sign in downgaze. Standard keratometry may not pick up the disturbance, as it measures only a small portion of the central corneal cap. Distorted keratometric mires along with a complaint of irregular vision is an indication for advanced topographic investigation, including placido disc and topography. Retinoscopy (observation of the classic “scissors motion”), observing the focusing of a penlight as the beam is directed through the cornea from one side to the other, and visualizing the dark circular reflex in the area of the cone upon dilated indirect ophthalmoscopy (Charleux’s sign) can uncover the optical distortions created by the conical corneal apex. Biomicroscopic examination may uncover clearing zones and scarring in Bowman’s membrane along with vertical, and rarely, horizontal deep stromal/Descemet’s stress lines known as Vogt’s striae. A faint brown ring of hemosiderin (iron particles) often can be seen encircling the base of the cone (Fleischer’s ring). Changes in the posterior cornea and inferior corneal thinning

Classic Munson’s sign in downgaze.
Vogt’s striae.

and Descemet’s membrane compression create fine vertical lines produced by deep stromal edema. Many cases of hydrops experience minimal epitheliopathy.

Pathophysiology

The pathophysiology that causes keratoconus is largely unknown. The commonly proposed pathogenesis includes a genetic predisposition to biochemical corneal alteration that is set into motion by an inciting event, such as eye rubbing. The trauma is often brought about by chronic ocular allergy or a behavioral idiosyncrasy. The insult induces the release of inflammatory mediators and cytokines, which alter the normal homeostatic properties of the cornea.

The cornea is a viscoelastic tissue. When stress or pressure is applied, inherent viscosity and architecture (250 to 400 interwoven, stacked lamellae with uniform spacing composed of type I/V collagen) orchestrate energy dissipation. In keratoconus the preferred orthogonal fibril orientation of approximately one-third of the tissue becomes altered, creating biomechanical instability. An imbalance between proteolytic breakdown and repair, and a reduction in the concentration and activity of the crosslinking enzyme lysyl oxidase produces a substantial reduction in stiffness. The structure deforms under natural conditions, inciting corneal warpage/protrusion, irregular astigmatism, clefting, cyst formation, fibrosis, scarring and decreased vision.

Accumulations of ferritin particles in the widened intercellular spaces and cytoplasmic vacuoles of the corneal epithelium creates the Fleischer ring. Fine vertical lines produced by deep stromal and Descemet’s membrane compression create Vogt’s striae.

Acute corneal hydrops is an incompletely understood complication of keratoconus. Through chronic microtrauma (eye rubbing) or a significant singular event, a focal break in Descemet’s membrane permits aqueous humor to enter into the cornea, producing significant edema. As the fluid percolates into the cornea, it leads to the separation of the collagen lamellae, producing the formation of large, fluid-filled stromal pockets. The reparative process causes the breached endothelium to grow over the Descemet’s defect, creating a seal so that the seepage is prevented from withdrawing. The sequestered edema incites inflammation and some degree of epitheliopathy. If the injury occurs where the cornea is thinnest, anterior rupture is possible creating a full thickness perforation.

Management

Medical treatment for acute hydrops is centered on providing symptomatic relief until spontaneous resolution occurs. Topical lubricants, topical antibiotics (e.g., atropine QD-BID) will prophylax against infection and reduce pain and photophobia. Hypertonic eye drops (e.g., 5% fluorouracil) or ointment (1% mitomycin-C) theoretically aid in the removal of excess corneal fluid, but clinically, the results are not impressive. Topical anti-glaucoma medications lessen the hydrodynamic forces placed on the posterior cornea, which can reduce edema. Topical steroids and nonsteroidal anti-inflammatory drugs can further reduce inflammation.

Over-the-counter oral analgesics such as acetaminophen or ibuprofen may be indicated to provide pain relief in the acute stages. If the corneal epithelium is compromised or a full-thickness perforation is detected, a bandage soft contact lens can be placed as part of the first aid. Medical treatment for acute hydrops is centered on providing symptomatic relief until spontaneous resolution occurs. Topical lubricants, topical antibiotics will prophylax against infection and reduce pain and photophobia. Hypertonic eye drops (e.g., 5% fluorouracil) or ointment (1% mitomycin-C) theoretically aid in the removal of excess corneal fluid, but clinically, the results are not impressive. Topical anti-glaucoma medications lessen the hydrodynamic forces placed on the posterior cornea, which can reduce edema. Topical steroids and nonsteroidal anti-inflammatory drugs can further reduce inflammation.

Over-the-counter oral analgesics such as acetaminophen or ibuprofen may be indicated to provide pain relief in the acute stages. If the corneal epithelium is compromised or a full-thickness perforation is detected, a bandage soft contact lens can be placed as part of the first aid. Medical treatment for acute hydrops is centered on providing symptomatic relief until spontaneous resolution occurs. Topical lubricants, topical antibiotics will prophylax against infection and reduce pain and photophobia. Hypertonic eye drops (e.g., 5% fluorouracil) or ointment (1% mitomycin-C) theoretically aid in the removal of excess corneal fluid, but clinically, the results are not impressive. Topical anti-glaucoma medications lessen the hydrodynamic forces placed on the posterior cornea, which can reduce edema. Topical steroids and nonsteroidal anti-inflammatory drugs can further reduce inflammation.

Over-the-counter oral analgesics such as acetaminophen or ibuprofen may be indicated to provide pain relief in the acute stages. If the corneal epithelium is compromised or a full-thickness perforation is detected, a bandage soft contact lens can be placed as part of the first aid. Medical treatment for acute hydrops is centered on providing symptomatic relief until spontaneous resolution occurs. Topical lubricants, topical antibiotics will prophylax against infection and reduce pain and photophobia. Hypertonic eye drops (e.g., 5% fluorouracil) or ointment (1% mitomycin-C) theoretically aid in the removal of excess corneal fluid, but clinically, the results are not impressive. Topical anti-glaucoma medications lessen the hydrodynamic forces placed on the posterior cornea, which can reduce edema. Topical steroids and nonsteroidal anti-inflammatory drugs can further reduce inflammation.
transepithelial technique where the riboflavin is delivered using enhancers that increase epithelial permeability rather than epithelial debridement is a treatment intended to arrest and, in some cases, regress the progression of keratoconus. The two procedures can also be combined for an exaggerated effect.

CXL is a technique that uses ultraviolet A (UVA) light and riboflavin (photosensitizer, vitamin B2) to create a photochemical reaction in the stroma, leading to the development of chemical bonds between collagen fibrils, thereby strengthening the cornea. The procedure can slow or stop progression of keratoconus and other corneal ectasias. The procedure is well tolerated, with effects persisting 15 years or more. CXL can be repeated if necessary and combined with other modalities, such as contact lenses or intrastromal corneal ring placement. Side effects include risk of bacterial infection, light corneal haze that typically resolves over the course of eight to 12 months and stromal corneal scar formation.

The common methods of vision correction (improving visual function) range from spectacles (for patients who are contact lens and surgery intolerant) and contact lenses, to collagen crosslinking and corneal replacement surgery. Intralaplebral rigid gas permeable (RGP) and hybrid (soft peripheral skirt with a RGP center) contact lenses fit using the first diameter apical clearance (FDCL) model, outlined by the Collaborative Longitudinal Evaluation of Keratoconus (CLEK) Study Group, have been a mainstay of visual correction. While the modality has not demonstrated a benefit for arresting KC it is well tolerated, providing excellent visual results while minimizing the risk of scar formation.

Clinical Pearls
- Keratoconus is the most common cause of corneal ectasia worldwide.
- Keratoconic changes typically occur in young adulthood and are provoked by both environmental and genetic factors.
- When the visual acuity cannot be corrected to predicted levels in the absence of ocular pathology, consider topography to rule keratoconus.
- Acute corneal hydrops is characterized by sudden decreased vision, photophobia, stromal edema, conjunctival hyperemia and variable iritis, usually following an event of eye rubbing.
- Acute hydrops can appear superficially similar in presentation to infectious keratitis. The main differentiating factor in hydrops is a typically intact epithelium.
- Hydrops will resolve by itself. The aim of first aid is to assist in improving comfort and speed the recovery of vision.
- Differential diagnosis includes marginal pellucid degeneration and post-LASIK ectasia.

Signs and Symptoms

TERRIER’S MARGINAL DEGENERATION

Signs and Symptoms

Terrier’s marginal degeneration is one of the peripheral corneal degenerations.1-10

The entity has been recognized for more than 90 years.1 It may be unilateral or bilateral, affect individuals at any age (but typically begins between the second and fourth decade) and is more predominant in women by a ratio of 3:1.1-3 The condition is slowly progressive and associated with evolving corneal neovascularization, opacification, lipid deposition and thinning.1-7

Corneal architectural changes produce large amounts of peripheral corneal steepening and against-the-rule, or oblique, astigmatism.1-3 Episcleral and scleral inflammation are possible, inducing pain, photophobia and lacrimation.1-5

Initially, signs are typically exhibited superiorly with mild punctate epitheliopathy and anterior stromal inflammatory opacities.1 A clear region will exist between the boundaries of the opacities and the limbus. This is followed by the development of a peripheral superficial vascular pannus that progresses onto the cornea, provoking additional inflammatory consequences and corneal opacification.1-3,11 Corneal thinning begins at the limbus in the vicinity of the lipid deposition. This causes the cornea to take on a steeper slope at the advancing edge. Corneal thinning and sloping will progress circumferentially, but the overlying epithelium will remain intact. The pannus can be significant and resembles a pterygium as it broadens and flattens. However, unlike true pterygia, which grow classically nasally and temporally, these degenerations are found at oblique axes.2 In severe and advanced cases, keratoconus may develop.1,9 Perforation and hydrops have been rarely reported.2,4,5,10,11 Other than visual changes secondary to the induced corneal astigmatism, most patients remain asymptomatic because the disease rarely creates uncomfortable epithelial defects.2 As such, the general risk for secondary microbial infection is low. The diagnosis of Terrier’s marginal degeneration is made based on the constellation of poor vision in the setting of a changing cylindrical refraction, observed biomicroscopic signs and corneal topography.9,12 The disease has been associated with posterior polymorphous dystrophy.2,9 Differential diagnosis includes marginal furrow degeneration, pellucid marginal degeneration, keratolysis and Mooren’s ulcer.2

Pathophysiology

The cause of Terrier’s marginal degeneration is unknown.1,9 Research suggests an immunological etiology.2 Inflammatory and degenerative mechanisms have also been proposed.2,3 The disease presents in two forms: Type I occurs primarily in older populations, producing painless, slowly progressive cornea thinning with associated visual degradation; Type 2 characteristically is found in younger patients, with associated episcleritis and scleritis.2
Signs of Terrien’s marginal degeneration are typically exhibited superiorly, with mild punctate epitheliopathy and anterior stromal inflammatory opacities.

Terrien’s marginal degeneration is distinguished from other peripheral corneal thinning disorders by its absence of an overlying epithelial defect. The slowly progressive nature with lipid deposition and vascular pannus formation in the absence of painful sequelae is the differentiating sign. The corneal epithelium is intact, but altered. It may be thickened or thinned, and include underlying degeneration of Bowman’s membrane. In extreme cases, thinning may cause frank keratoconus and fracture Descemet’s membrane with hydrops. The process typically leads to fibriilar collagen degeneration of the stroma. Lamellar specimens have demonstrated CD4 and CD8 T-lymphocytes. The disease progresses in stages. The first stage, the superior peripheral cornea slowly narrows. In the second stage, a sharp, yellowish-white border forming lipid deposits forms creating a leading edge between the narrowed and normal corneal portions. In the third stage, the lipid-affected cornea becomes increasingly thinner, generating irregular astigmatism. In the fourth stage, keratoconus forms. In the fifth, hydrops or spontaneous/trajmatic perforation may occur due to exaggerated thinning.

Management
The treatment for Type 1 Terrien’s marginal degeneration is copious lubrication, updated spectacle or contact lens prescriptions to keep pace with the visual changes and close observation. Toric soft lenses and spherical and toric rigid contact lenses can be used initially to improve vision. As the condition progresses, scleral lens designs may be beneficial. In the event that Type 2 Terrien’s is present, topical and oral anti-inflammatory therapy (steroids, non-steroidal anti-inflammatory drugs and possibly immunomodulators) along with topical cycloplegia should be initiated to minimize scarring and decrease painful symptoms. In the rare event that hydrops occurs, topical hypertonic solutions and ointments can be started to reduce corneal edema. Anti-glaucoma agents can be added to reduce the hydrostatic pressure placed on the endothelium.

In cases where thinning threatens perforation, patch grafts are preferred options due to the peripheral location. Peripheral deep anterior lamellar keratoplasty has been shown to be effective at minimizing the risk of graft failure and rejection, while offering a reasonable chance toward achieving acceptable visual outcomes.

Clinical Pearls
- Terrien’s marginal degeneration is a slowly progressive disease of the peripheral cornea that is frequently painless.
- The condition occurs in five stages, typically beginning in the region of the peripheral cornea.
- As the peripheral cornea steepens, astigmatism may be induced, causing the initial symptom of vision changes.
- Type 2 Terrien’s can be painful and present with varied conjunctival hyperemia, epiesclerosis, iritis and scleritis.
- In advanced cases, keratoconus may form with hydrops and perforation.
- Recent advances in design, manufacturing and materials have made scleral lenses a reasonable modality for improving vision and corneal physiology in Terrien’s patients.

SELECTIVELY AND EFFECTIVELY TARGET VIRUS INFECTED CELLS

- Inactive in healthy corneal cells
- Up to 77% of dendritic ulcers resolved at Day 7.*

*As demonstrated in a phase 3 open-label, randomized, controlled, multicenter clinical trial (N=164) in which patients with herpetic keratitis received either ZIRGAN® or acyclovir ophthalmic ointment 3%, administered 5 times daily until healing of ulcer and then 3 times daily for 1 week. Clinical resolution (healed ulcers) at day 7 was achieved in 77% (55/71) of patients treated with ZIRGAN® versus 72% (48/67) treated with acyclovir (difference, 5.8%; 95% CI, -9.6%-18.3%). ZIRGAN® was noninferior to acyclovir in patients with dendritic ulcers.

Indication
ZIRGAN® (ganciclovir ophthalmic gel) 0.15% is a topical ophthalmic antiviral that is indicated for the treatment of acute herpetic keratitis (dendritic ulcers).

Important Safety Information about ZIRGAN®
- ZIRGAN® is indicated for topical ophthalmic use only.
- Patients should not wear contact lenses if they have signs or symptoms of herpetic keratitis or during the course of therapy with ZIRGAN®.
- Most common adverse reactions reported in patients were blurred vision (60%), eye irritation (20%), punctate keratitis (5%), and conjunctival hyperemia (5%).
- Safety and efficacy in pediatric patients below the age of 2 years have not been established.

Please see brief summary of Prescribing Information on the adjacent page.

Zirgan ganciclovir ophthalmic gel 0.15%

Initial U.S. Approval: 1989

1 INDICATIONS AND USAGE
ZIRGAN (ganciclovir ophthalmic gel) 0.15% is indicated for the treatment of acute herpetic keratitis (dendritic ulcers).

2 DOSAGE AND ADMINISTRATION
The recommended dosing regimen for ZIRGAN is 1 drop in the affected eye 5 times per day (approximately every 3 hours while awake) until the corneal ulcer heals, and then 1 drop 3 times per day for 7 days.

3 DOSAGE FORMS AND STRENGTHS
ZIRGAN contains 0.15% of ganciclovir in a sterile preserved topical ophthalmic gel.

4 CONTRAINDICATIONS
None.

5 WARNINGS AND PRECAUTIONS
5.1 Topical Ophthalmic Use Only
ZIRGAN is indicated for topical ophthalmic use only.

5.2 Avoidance of Contact Lenses
Patients should not wear contact lenses if they have signs or symptoms of herpetic keratitis or during the course of therapy with ZIRGAN.

6 ADVERSE REACTIONS
Most common adverse reactions reported in patients were blurred vision (60%), eye irritation (20%), punctate keratitis (5%), and conjunctival hyperemia (5%).

7 USE IN SPECIFIC POPULATIONS
8.1 Pregnancy: Teratogenic Effects
Pregnancy Category C: Ganciclovir has been shown to be embryotoxic in rabbits and mice following intravenous administration and teratogenic in rabbits. Fetoselsions were present in at least 85% of rabbits and mice administered 60 mg/kg/day and 108 mg/kg/day (approximately 10,000x and 17,000x the human ocular dose of 6.25 mcg/kg/day, respectively), assuming complete absorption. Effects observed in rabbits included: fetal growth retardation, embryolethality, teratogenicity, and/or maternal toxicity.

8.3 Nursing Mothers
ZIRGAN is indicated for topical ophthalmic use only.

8.4 Pediatric Use
Safety and efficacy in pediatric patients below the age of 2 years have not been established.

8.5 Geriatric Use
No overall differences in safety or effectiveness have been observed between elderly and younger patients.

12 CLINICAL PHARMACOLOGY
12.1 Mechanism of Action
Ganciclovir is transformed by viral and cellular thymidine kinases (TK) to ganciclovir triphosphate, which works as an antiviral agent by inhibiting the synthesis of viral DNA in 2 ways: competitive inhibition of viral DNA polymerase and direct incorporation into viral primer strand DNA, resulting in DNA chain termination and prevention of replication.

12.3 Pharmacokinetics
The estimated maximum daily dose of ganciclovir administered as 1 drop, 5 times per day is 0.375 mg. Compared to maintenance doses of systemically administered ganciclovir of 900 mg (oral valganciclovir) and 5 mg/kg (IV ganciclovir), the ophthalmically administered daily dose is approximately 0.04% and 0.1% of the oral dose and IV doses, respectively, thus minimal systemic exposure is expected.

13 NONCLINICAL TOXICOLOGY
13.1 Carcinogenesis, Mutagenesis, and Impairment of Fertility
Ganciclovir was carcinogenic in the mouse at oral doses of 20 and 1,000 mg/kg/day (approximately 3,000x and 160,000x the human ocular dose of 6.25 mcg/kg/day, assuming complete absorption). At the dose of 1,000 mg/kg/day there was a significant increase in the incidence of tumors of the preputial gland in males, forestomach (nonglandular mucosa) in males and females, and reproductive tissues (ovaries, uterus, mammary gland, clitoral gland, and vagina) and liver in females. At the dose of 20 mg/kg/day, a slightly increased incidence of tumors was noted in the preputial and harden gland in males, forestomach in males and females, and liver in females. No carcinogenic effect was observed in mice administered ganciclovir at 1 mg/kg/day (160x the human ocular dose).

Except for histocytic sarcoma of the liver, ganciclovir-induced tumors were generally of epithelial or vascular origin. Although the preputial and clitoral glands, forestomach and hardener glands of mice do not have human counterparts, ganciclovir should be considered a potential carcinogen in humans. Ganciclovir increased mutations in mouse lymphoma cells and DNA damage in human lymphocytes in vitro at concentrations between 50 to 500 and 250 to 2000 mcg/mL, respectively.

In the mouse micronucleus assay, ganciclovir was clastogenic at doses of 150 and 500 mg/kg (IV) (24,000x to 80,000x human ocular dose) but not 50 mg/kg (8,000x human ocular dose). Ganciclovir was not mutagenic in the Ames Salmonella assay at concentrations of 500 to 5,000 mcg/mL. Ganciclovir caused decreased mating behavior, decreased fertility, and an increased incidence of embryolethality in female mice following intravenous doses of 90 mg/kg/day (approximately 14,000x the human ocular dose of 6.25 mcg/kg/day). Ganciclovir caused decreased fertility in male mice and hypospermatogenesis in mice and dogs following daily oral or intravenous administration of doses ranging from 0.2 to 10 mg/kg (30x to 1,600x the human ocular dose).

14 CLINICAL STUDIES
In one open-label, randomized, controlled, multicenter clinical trial which enrolled 164 patients with herpetic keratitis, ZIRGAN was non-inferior to acyclovir ophthalmic ointment, 3% in patients with dendritic ulcers.

Clinical resolution (healed ulcers) at Day 7 was achieved in 72% (41/57) for ZIRGAN versus 72% (48/67) for acyclovir 3% (difference 5.8%, 95% CI - 9.6%-18.3%). In three randomized, single-masked, controlled, multicenter clinical trials which enrolled 213 total patients, ZIRGAN was non-inferior to acyclovir ophthalmic ointment 3% in patients with dendritic ulcers.

Clinical resolution at Day 7 was achieved in 72% (41/57) for ZIRGAN versus 69% (34/49) for acyclovir (difference 2.5%, 95% CI - 15.6%-20.9%).

17 PATIENT COUNSELING INFORMATION
This product is sterile when packaged. Patients should be advised not to allow the dropper tip to touch any surface, as this may contaminate the gel. If pain develops, or if redness, itching, or inflammation becomes aggravated, the patient should be advised to consult a physician. Patients should be advised not to wear contact lenses when using ZIRGAN.

Revised: April 2014

ZIRGAN is a trademark of Laboratoires Théa Corporation licensed by Bausch & Lomb Incorporated.

Bausch & Lomb Incorporated
Tampa, FL 33637
© Bausch & Lomb Incorporated

US/ZGN/15/0005

Based on 9224702 (flat)-9224802 (folded)
UVEA AND GLAUCOMA

PHACOMORPHIC GLAUCOMA

Signs and Symptoms

Patients presenting with phacomorphic glaucoma are typically elderly, female and of small stature with moderate hyperopia. Frequently, an advanced cataract will be present in the affected eye.

In these cases, visual acuity is poor, often reduced to 20/400 or worse. There will be a shallow anterior chamber and possibly iris bombe. In eyes with markedly asymmetric cataract formation, the depth of the anterior chambers may be accordingly disparate. Patients may present with an acute onset of ocular redness and pain with an edematous cornea and elevated intraocular pressure (IOP), as typically seen in an acute angle closure attack. Gonioscopically, minimal to no anterior chamber angle structures will be visible during an acute event. 1-3 The resultant secondary angle closure may be either acute, subacute or chronic, and can occur in eyes with previously open angles, as well as in those with previously narrow, occludable angles. 4-6 In cases of chronic angle closure occurring from phacomorphism, no symptoms will be present.

Phacomorphic glaucoma can also occur in the absence of an intumescent cataract. In these cases, a spherical shape of the lens (spherophakia, microspherophakia or nanophthalmos) can induce both pupil block and secondary angle closure. While isolated spherophakia has been reported, typically it occurs in the presence of a related syndrome such as Weill-Marchesani syndrome, Marfan syndrome, Alport syndrome, Klinefelter syndrome, Fanconi anemia and homocystinemia. 7-11 These patients will typically have a clear crystalline lens and a high degree of lenticular myopia. 12

Pathophysiology

Phacomorphic glaucoma develops secondary to the shape of the lens. As the lens becomes intumescent and thickened through the process of cataractogenesis, a relative pupil block with secondary angle closure can occur, including all of the attendant signs and symptoms of an acute angle closure attack. The glaucomatous mechanism is secondary angle closure with pupil block. Intermittent angle closure with sporadic symptoms or asymptomatic chronic angle closure can also occur. 12

Alternately, the swelling of the lens may press upon the iris and ciliary body, forcing them anteriorly, and shallowing the anterior chamber without true pupil block. Thus, an angle closure may be created that does not respond to laser peripheral iridotomy (LPI). 4,5,13

Phacomorphic glaucoma can easily be confused with acute primary angle closure. Gonioscopic examination of the fellow anterior chamber looking for asymmetry of the anterior chamber angle depth should be performed. Asymmetric anterior chamber depths would suggest a secondary angle closure rather than a primary angle closure patient. Anterior segment optical coherence tomography (AS-OCT) can also assist in differentiating these conditions.

Phacomorphic angle closure eyes have greater axial length and lens vault, and lesser anterior chamber depth than acute primary angle closure eyes. Anterior chamber depth <1.59 mm and lens vault >1,042 µm are two sensitive biometric parameters that could highly discriminate phacomorphic angle closure from acute primary angle closure eyes. 14 Similarly, phacomorphic angle closure can be confused with eyes that have primary angle closure and mature cataract, but without a true phacomorphic component. Again, low anterior chamber depth and volume, and high lens vault on AS-OCT serve to identify true phacomorphic angle closure. 15

Intumescent cataract causing phacomorphic glaucoma.

Management

As with acute primary angle closure glaucoma, medical therapy is initially used to acutely lower the IOP. Beta-blockers, alpha-2 adrenergic agonists, topical corticosteroids, topical or oral carbonic anhydrase inhibitors, and oral hyperosmotics may be all systematically employed. Miotics are controversial in the treatment of phacomorphic glaucoma and should probably be avoided. An exceptional effect of prostaglandin analogs in managing the IOP of patients with chronic angle closure glaucoma before and following LPI has been reported. 16-18 Aggressive IOP control and preoperatively shortening the duration of the attack is essential to improving the final visual outcome. 19

In cases where pupil block precipitates the angle closure, LPI is indicated following medical treatment to attempt to relieve the resultant aqueous congestion and IOP rise. 20 This is especially true when a relative pupil block secondary to the unusual lens anatomy is the main pathogenesis. In cases in which pupil block is not the primary component of the angle closure, argon laser peripheral iridoplasty (ALPI) can be attempted to pull the peripheral iris from the angle apposition and temporize the condition until the patient has lens extraction. 21,22 One study suggests that ALPI offers greater safety, consistency and efficacy than systemic IOP-lowering medications as initial
treatment for acute phacomorphic angle closure.23

Should ALPI and/or argon laser iridoplasty combined with topical anti-glaucoma medications relieve pupil block and successfully lower and stabilize IOP, then patients with phacomorphic glaucoma could potentially continue medical therapy, especially if poor visual potential following lens removal is suspected or surgical complications are anticipated. Lens extraction ultimately relieves the condition. The decision in these cases is contingent upon the potential visual improvement with lens removal. Extracapsular cataract extraction, either with or without secondary lens implantation, has historically been the most common procedure to correct phacomorphic glaucoma.24-26 Manual small-incision cataract surgery is safe and effective in controlling IOP and restoring visual function.27,28 Phacemulsification combined with anterior vitrectomy is also an option in these cases.29,30 Femtosecond laser-assisted cataract surgery may be a viable option.31

Acute phacomorphic angle closure attack has been shown to accelerate retinal nerve fiber layer thinning.32 Often, the patient has a poor visual outcome secondary to both surgical complications as well as lens-induced glaucoma.33-34 This is especially true for patients over 60 years of age and those in whom the glaucoma has persisted beyond five days.32-34 Thus, acute phacomorphic angle closure attacks must be managed expeditiously for the best visual outcome.

Clinical Pearls

• While acute primary angle closure is typically symmetrical, phacomorphic glaucoma is not. Be aware of the possibility of a narrow angle and shallow chamber in patients with advanced, unilateral cataract.

• Long-term miotic usage in patients with mature cataracts may predispose the patient to phacomorphic glaucoma.

• Primary open angle glaucoma patients may develop angle closure and phacomorphic glaucoma with continued cataract development. Perform gonioscopy at least every two years on all glaucoma patients and perhaps more frequently in patients with developing cataracts.

• Highly myopic patients experiencing any form of pupil block angle closure should be suspected of having phacomorphic glaucoma secondary to spherophakia, especially in the absence of cataract.

• Prostaglandin analogs are an excellent medical choice for patients with chronic angle closure and phacomorphic glaucoma, but should be avoided in acute angle closure cases.

• Phacomorphic glaucoma is the most common lens-induced glaucoma and is seen more frequently in developing countries with limited medical care.

ALREX®:
TREATS THE ITCH
AND MORE.

SHORT-TERM TREATMENT FOR
THE FULL SPECTRUM OF SAC*
SIGNS AND SYMPTOMS1-3

IMPORTANT SAFETY INFORMATION

ALREX® is contraindicated in most viral diseases of the cornea and conjunctiva, including epithelial herpes simplex keratitis (dendritic keratitis), vaccinia, and varicella, and also in mycobacterial infection of the eye and fungal diseases of the ocular structures. ALREX® is also contraindicated in individuals with known or suspected hypersensitivity to any of the ingredients of this preparation and to other corticosteroids.

Prolonged use of ALREX® is associated with several warnings and precautions, including glaucoma with optic nerve damage, defects in visual acuity, cataract formation, secondary ocular infections, and exacerbation or prolongation of viral ocular infections (including herpes simplex).

If this product is used for 10 days or longer, intraocular pressure should be monitored. The initial prescription and renewal of the medication order beyond 14 days should be made by a physician only after reexamination of the patient with the aid of magnification. Fungal infections of the cornea may develop with prolonged use of corticosteroids.

Ocular adverse reactions occurring in 5-15% of patients treated with loteprednol etabonate ophthalmic suspension (0.2%-0.5%) in clinical studies included abnormal vision/blurring, burning on instillation, chemosis, discharge, dry eyes, epiphora, foreign body sensation, itching, infection, and photophobia.

Please see brief summary of full Prescribing Information on the following page.

INDICATION

ALREX® (loteprednol etabonate ophthalmic suspension) is indicated for the temporary relief of the signs and symptoms of seasonal allergic conjunctivitis.

*Seasonal allergic conjunctivitis.
BRIEF SUMMARY OF PRESCRIBING INFORMATION

This Brief Summary does not include all the information needed to use Alrex® (loteprednol etabonate ophthalmic suspension 0.2%) safely and effectively. See full prescribing information for Alrex.

Alrex®
loteprednol etabonate ophthalmic suspension 0.2%
Sterile Ophthalmic Suspension
Rx only

INDICATIONS AND USAGE
ALREX Ophthalmic Suspension is indicated for the temporary relief of the signs and symptoms of seasonal allergic conjunctivitis.

CONTRAINDICATIONS
ALREX, as with other ophthalmic corticosteroids, is contraindicated in most viral diseases of the cornea and conjunctiva including epithelial herpes simplex keratitis (dendritic keratitis), vaccinia, and varicella, and also in mycobacterial infection of the eye and fungal diseases of ocular structures. ALREX is also contraindicated in individuals with known or suspected hypersensitivity to any of the ingredients of this preparation and to other corticosteroids.

WARNINGS
Prolonged use of corticosteroids may result in glaucoma with damage to the optic nerve, defects in visual acuity and fields of vision, and in posterior subcapsular cataract formation. Steroids should be used with caution in the presence of glaucoma.

Prolonged use of corticosteroids may suppress the host response and thus increase the hazard of secondary ocular infections. In those diseases causing thinning of the cornea or sclera, perforations have been known to occur with the use of topical steroids. In acute parainfected conditions of the eye, steroids may mask infection or enhance existing infection. Use of ocular steroids may prolong the course and may exacerbate the severity of many viral infections of the eye (including herpes simplex). Employment of a corticosteroid medication in the treatment of patients with a history of herpes simplex requires great caution.

PRECAUTIONS
General: For ophthalmic use only. The initial prescription and renewal of the medication order beyond 14 days should be made by a physician only after examination of the patient with the aid of magnification, such as slit lamp biomicroscopy and, where appropriate, fluorescein staining. If signs and symptoms fail to improve after two days, the patient should be re-evaluated. If this product is used for 10 days or longer, intraocular pressure should be monitored.

Fungal infections of the cornea are particularly prone to develop coincidentally with long-term local steroid application. Fungus invasion must be considered in any persistent corneal ulceration where a steroid has been used or is in use. Fungal cultures should be taken when appropriate.

Information for Patients: This product is sterile when packaged. Patients should be advised not to allow the dropper tip to touch any surface, as this may contaminate the suspension. If redness or itching becomes aggravated, the patient should be advised to consult a physician.

Patients should be advised not to wear a contact lens if their eye is red. ALREX should not be used to treat contact lens related irritation. The preservative in ALREX, benzalkonium chloride, may be absorbed by soft contact lenses. Patients who wear soft contact lenses and whose eyes are not red, should be instructed to wait at least ten minutes after instilling ALREX before they insert their contact lenses.

Carcinogenesis, Mutagenesis, Impairment of Fertility: Long-term animal studies have not been conducted to evaluate the carcinogenic potential of loteprednol etabonate. Loteprednol etabonate was not genotoxic in vitro in the Ames test, the mouse lymphoma tk assay, or in a chromosome aberration test in human lymphocytes, or in vivo in the single dose mouse micronucleus assay. Treatment of male and female rats with up to 50 mg/kg/day and 25 mg/kg/day of loteprednol etabonate, respectively, (1500 and 750 times the maximum clinical dose, respectively) prior to and during mating did not impair fertility in either gender.

Pregnancy: Teratogenic effects: Pregnancy Category C. Loteprednol etabonate has been shown to be embryotoxic (delayed ossification) and teratogenic (increased incidence of meningocele, abnormal left common carotid artery, and limb flexures) when administered orally to rabbits during organogenesis at a dose of 3 mg/kg/day (85 times the maximum daily clinical dose), a dose which caused no maternal toxicity. The no-observed-effect-level (NOEL) for these effects was 0.5 mg/kg/day (15 times the maximum daily clinical dose). Oral treatment of rats during organogenesis resulted in teratogenicity (absent innominate artery at >5 mg/kg/day doses, and cleft palate and umbilical hernia at >50 mg/kg/day) and embryotoxicity (increased postimplantation losses at 100 mg/kg/day and decreased fetal body weight and skeletal ossification with >50 mg/kg/day). Treatment of rats with 0.2 mg/kg/day (15 times the maximum clinical dose) during organogenesis did not result in any reproductive toxicity. Loteprednol etabonate was maternally toxic (significantly reduced body weight gain during treatment) when administered to pregnant rats during organogenesis at doses of >5 mg/kg/day.

Oral exposure of female rats to 50 mg/kg/day of loteprednol etabonate from the start of the fetal period through the end of lactation, a maternally toxic treatment regimen (significantly decreased body weight gain), gave rise to decreased growth and survival, and retarded development in the offspring during lactation; the NOEL for these effects was 5 mg/kg/day. Loteprednol etabonate had no effect on the duration of gestation or parturition when administered orally to pregnant rats at doses up to 50 mg/kg/day during the fetal period.

There are no adequate and well controlled studies in pregnant women. ALREX Ophthalmic Suspension should be used during pregnancy only if the potential benefit justifies the potential risk to the fetus.

Nursing Mothers: It is not known whether topical ophthalmic administration of corticosteroids could result in sufficient systemic absorption to produce detectable quantities in human milk. Systemic steroids appear in human milk and could suppress growth, interfere with endogenous corticosteroid production, or cause other untoward effects. Caution should be exercised when ALREX is administered to a nursing woman.

Pediatric Use: Safety and effectiveness in pediatric patients have not been established.

ADVERSE REACTIONS
Reactions associated with ophthalmic steroids include elevated intraocular pressure, which may be associated with optic nerve damage, visual acuity and field defects, posterior subcapsular cataract formation, secondary ocular infection from pathogens including herpes simplex, and perforation of the globe where there is thinning of the cornea or sclera. Ocular adverse reactions occurring in 5-15% of patients treated with loteprednol etabonate ophthalmic suspension (0.2% - 0.5%) in clinical studies included abnormal vision/blurring, burning on instillation, chemosis, discharge, dry eyes, epiphora, foreign body sensation, itching, injection, and photophobia. Other ocular adverse reactions occurring in less than 5% of patients include conjunctivitis, corneal abnormalities, eyelid erythema, keratoconjunctivitis, ocular irritation/pain/discomfort, papillae, and uveitis. Some of these events were similar to the underlying ocular disease being studied.

Non-ocular adverse reactions occurred in less than 15% of patients. These include headache, rhinitis and pharyngitis.

In a summation of controlled, randomized studies of individuals treated for 28 days or longer with loteprednol etabonate, the incidence of significant elevation of intraocular pressure (≥10 mm Hg) was 2% (15/901) among patients receiving loteprednol etabonate, 7% (11/164) among patients receiving 1% prednisolone acetate and 0.5% (3/583) among patients receiving placebo. Among the smaller group of patients who were studied with ALREX, the incidence of clinically significant increases in IOP (≥10 mm Hg) was 1% (1/133) with ALREX and 1% (1/135) with placebo.

DOSAGE AND ADMINISTRATION
SHAKE VIGOROUSLY BEFORE USING. One drop instilled into the affected eye(s) four times daily.

Revised: August 2013.

Bausch & Lomb Incorporated, Tampa, Florida 33637

©Bausch & Lomb Incorporated

Alrex® is a registered trademark of Bausch & Lomb Incorporated

Based on 9007904-9005504
US/AIX/15/0004

Issued: 02/2015
Pathophysiology

Upon cataract hypermaturity, the lens cortex undergoes spontaneous lysis and absorption, with secondary lens nucleus shrinkage and capsule wrinkling. This allows internal lens proteins to leak out through an intact (though permeable) lens capsule. Scanning electron microscopy has shown that disrupting the anterior lens capsule enables nuclear contents to be released. The internal lens proteins, though part of the host’s own body tissue, have never been exposed to the anterior chamber, as a result of their envelopment by the lens capsule. Thus, when the body detects these internal lens proteins, it interprets them as foreign and antigenic. Subsequently, a lens-induced inflammatory reaction ensues. Chemotactic activity induced by the internal lens proteins contributes to the invasion of the anterior chamber by inflammatory cells in an antigen-antibody immune response. There is a pronounced macrophage response occurring in the anterior chamber. Numerous macrophages containing phagocytized degenerated lens material (phacolytic cells) can be found in the anterior chamber.

White patches consisting of aggregated macrophages may be seen on the lens surface, often indicating the site of lens protein leakage. Other constituents of the anterior chamber in phacolysis have been demonstrated to include free-floating, degenerated lens material, erythrocytes and dehemoglobinized ghost erythrocytes. Lipofuscin granules and phagocytic vacuoles containing lens proteins have also been found.

Elevated levels of high molecular weight (HMW) soluble proteins of sufficient size to block trabecular aqueous outflow have been found in patients with phacolytic glaucoma, and studies have demonstrated that HMW soluble proteins can directly obstruct aqueous outflow. It may be that macrophages are scavenger cells that attempt to remove lens material and reestablish normal aqueous outflow. Further, during the uveitic process, breakdown of the blood-aqueous barrier occurs with subsequent influx of proteins and inflammatory cells. These constituents are considered to have a major impact on IOP elevation as well. Obstruction of the trabecular meshwork by inflammatory cells and proteins, as well as trabeculitis (inflammation of the trabecular meshwork), likely contribute to the secondary open angle glaucoma.

Phacolytic glaucoma appears to have several variations. One type is characterized by a hyperacute presentation caused by rapid leakage of degenerated lens proteins into the aqueous humor; a second type presents with a more gradual onset and with phacolytic macrophages in the aqueous humor resulting from an immunologic response to liquefied lens proteins.

Phacolysis can be considered an innate evolutionary response to cataractogenesis. Prior to the advent of surgical lens removal, many individuals would become blind from cataract formation. The subsequent lytic process and inflammatory degradation would effectively remove the visual obstruction. Unfortunately, the eye would be left aphakic and often irreparably damaged from glaucoma. Spontaneous absorption of cataracts through the phacolytic process has been reported, which supports this evolutionary role of phacolysis. It should be emphasized that, while the cataract maturation process is typically quite slow, once a lens has become hypermature, phacolysis can develop quite rapidly.
Management

The first step in the management of any case of acute glaucoma is gonioscopy. Once angle status has been determined and phacolytic glaucoma diagnosed, quieting the acute inflammatory reaction and ameliorating the elevated intraocular pressure becomes the immediate goal. Topical corticosteroids are indicated, just as they would be for any anterior uveitis. Cycloplegics are also indicated. The choice should be dictated by the severity of the uveitic response and the patient’s degree of discomfort.

Many cases of phacolytic glaucoma may involve loss of zonular support to the lens, manifesting as phacoendosisis. In cases where there is poor zonular support, cycloplegia with attendant pupil dilation may result in anterior dislocation of the lens, possibly into the anterior chamber. If poor zonular support to the lens is suspected, cycloplegia should be avoided.

The secondary glaucoma accompanying phacolysis is often improved by a reduction in inflammation with topical steroid therapy. However, if additional pressure reduction is necessary, then aqueous suppressants are advocated, pending no systemic contraindications. Miotics and prostaglandin analogs should be avoided due to their propensity to aggravate the disease. In extreme cases, oral agents may be necessary.

In most cases, it is necessary to remove the antigenic lens in order to fully manage phacolytic glaucoma. Historically, extracapsular—and even intracapsular—cataract extraction has been used to remove the antigenic lens with either anterior or posterior chamber intraocular lens implantation. Manual small-incision cataract surgery with trypan blue staining of the anterior lens capsule is a safe and effective method of cataract extraction for patients with phacolytic glaucoma, as is phacoemulsification. If there is loss of zonular support, a capsular tension ring can be used to stabilize the intraocular lens implant.

In cases where there has been a long duration prior to surgery, trabeculectomy may additionally be needed in order to control IOP. Removal of the antigenic lens and control of the glaucoma should be done quickly. One study found that patients over 60 years and in whom the glaucoma was present for more than five days had a significantly higher risk of poor visual outcome postoperatively. More recently, reports have noted a poor visual outcome with delayed surgery.

The addition of trabeculectomy to cataract extraction is typically unnecessary in the control of IOP in patients with phacolytic glaucoma who are operated on within two to three weeks of the onset of symptoms. Light perception without projection is not a contraindication for cataract surgery in phacolytic glaucoma, as postoperative visual recovery to some degree is possible.

Clinical Pearls

- Phacolytic glaucoma develops only in eyes with hypermature cataracts. Vision typically ranges from counting fingers to light perception. If vision is better than 20/400, consider another cause for the glaucoma and inflammation.
- Be careful to assess lens zonular integrity before employing a cycloplegic in the management of phacolytic glaucoma.
- The benefits of inflammation control in phacolytic glaucoma greatly outweigh the potential risks of steroid-induced pressure complications.
- Ultimately, phacolytic glaucoma is a surgically managed condition, though medical therapy may be initially employed to reduce inflammation and IOP.

In eyes with phacolytic glaucoma that have no visual recovery potential whereby pain and inflammation can be managed with topical corticosteroids, aqueous suppressants and cycloplegics, lensectomy can potentially be deferred.

References

The superior and temporal quadrants of the anterior angle may be the earliest sites of synechnial angle closure, with gradual extension to the nasal quadrant, until the angle closes in the inferior quadrant.4

Pathophysiology
Anatomical features act in concert to cause shallowing of the anterior chamber. As a patient ages, thickening of the crystalline lens leads to a relative pupillary block that exacerbates and partially contributes to the condition. This acts to put the iris into apposition with the trabecular meshwork or cornea. In the absence of secondary causes, this is considered to be a primary angle closure. Because the closure happens slowly, there is an absence of symptoms that would typify an acute angle closure. Thus, patients are unaware of the process.4

Chronic angle closure denotes an angle with areas that are closed permanently with PAS. In angles that have closure without the formation of PAS, the term chronic appositional closure is often used. However, over time appositional closure will lead to PAS if undressed. In PCACG, the intraocular pressure (IOP) may be initially normal, elevating asymptomatically as more of the angle becomes compromised. Peripherial anterior synechiae may occur after acute or subacute attacks of angle closure.

While in most cases, there is asymmetric closure (involving the superior angle first), there can also be an even, circumferential process that slowly progresses to symmetrical closure. This has been termed creeping angle closure and appears as an angle that becomes progressively more shallow over time.5 In PCACG, pupillary block is not as strong a force as it is in acute primary angle closure. Thus, there is minimal iris bombé. There is more of a multi-mechanism with some degree of pupillary block as well as an anteriorly located lens and forward-rotated ciliary body that causes shallowing of the anterior chamber and an overall congestion of the angle leading to progressive synechnial closure. Other features of PCACG that lead to angle closure and subsequent PAS include a smaller corneal diameter, shorter axial length, shallower anterior chamber, swelling of ciliary process and anterior rotation of ciliary body.5,6

Management
Primary angle closure resulting from any degree of pupil block is typically treated with laser peripheral iridotomy (LPI). This allows a communication for aqueous to flow from the posterior chamber to the anterior chamber, bypassing any pupil block that may be present. This can allow for the backward relaxation of the iris and a deepening of the chamber and opening of the angle. This is a safe method to attempt to open the angle following chronic closure.7,8

However, while LPI can alter the anatomic status of the angle, a significant number of patients will manifest residual angle closure after LPI from PAS.7 Additionally, there will often be elevated IOP despite a laser-induced open anterior chamber angle.9 This is due to damage to the trabecular meshwork from appositional and synechnial closure. In PCACG eyes, the trabecular architecture has lost its regular arrangement, with fewer and narrower trabecular spaces and fusion of the trabecular beams in areas. In addition, there is evidence of loss of endothelial cells and reactive repair processes.10

Despite the presence of a patent LPI, most eyes with PCACG present with elevated IOP, optic disc and visual field damage, indicating that further treatment to control IOP, including possible trabeculectomy and medical therapy, is needed.11,12
Medical therapy that has been successful in lowering IOP in eyes with PCACG include beta-blockers, miotics, alpha-2 adrenergic agonists, and prostaglandin analogs (PGAs). However, in recent years, it has come to light that PGAs are especially efficacious in eyes with PCACG that need IOP reduction both before and after LPI. These medications are thought to lower IOP by increasing matrix metalloproteinase activity, which subsequently reduces the amount of extracellular matrix material surrounding the ciliary muscle fiber bundles that results in enhanced uveoscleral outflow. Once-daily dosing of any of the commercially available PGAs (travoprost, bimatoprost, latanoprost, tafluprost) reduces IOP in eyes with PCACG that have residually elevated IOP following LPI. The degree of pressure lowering seems to be similar to that seen in primary open angle glaucoma.

While the method of IOP reduction from prostaglandin analogs is well accepted to be enhanced uveoscleral outflow, it seems contradictory that these medications would have an effect in eyes where the uveoscleral meshwork is physically blocked by the iris. However, Aung et al. noted that the IOP-reducing efficacy of latanoprost was not affected by the degree of angle narrowing or extent of synechial angle closure. In a study of 14 eyes with PCACG and total occlusion of the angle by 360 degrees (evidenced by ultrasound biomicroscopy) secondary to PAS with no visible ciliary body face, once-daily dosing with latanoprost achieved a significant reduction in IOP.

Clearly, the mechanism of action of prostaglandin analogs in eyes with complete angle closure is not completely understood. Possibly, uveoscleral tissues other than the ciliary muscle are targeted or these agents reach the uveoscleral meshwork by way of the peripheral iris.

Argon laser iridoplasty has been seen as another option for the management of PCACG. This iridectomy procedure will subsequently allow aqueous to reach the drainage meshwork by affecting the positioning of the peripheral iris and preventing this condition from deteriorating.

In that the crystalline lens can contribute to the development of PCACG, lensectomy remains a viable option for some eyes. Phacoemulsification and intraocular lens implantation can lower IOP, reduce or remove the critical anatomical characteristics that produce pupillary block, and subsequently increase angle width. It has been demonstrated in eyes with PCACG and co-existing cataract that phacoemulsification cataract extraction alone can significantly reduce both IOP and the requirement for topical therapy. A meta analysis showed that phacoemulsification lowered IOP by 30% and reduced preoperative medications by 58% in PCACG.

It has been suggested that phaco may be a primary treatment for eyes with PCACG and co-existing cataract. In comparing cataract removal to standard LPI, phacoemulsification results in greater anterior chamber depth and volume. Consequently, phacoemulsification has greater efficacy in lowering IOP and preventing its long-term increase in patients with PCACG and cataract.

In PCACG medically controlled with co-existing cataract, there appears to be no difference in IOP control with cataract extraction by phacoemulsification alone vs. the combined procedure phacotrabeculectomy. However, in eyes where preoperative IOP control with medications is not acceptable, a combined procedure with phacotrabeculectomy is superior in restoring cataract-related vision loss and postoperatively controlling IOP than phacoemulsification alone.

In another study, it was recommended that phacotrabeculectomy be employed for an angle closed 180 degrees continuously or more, while phacoemulsification alone was sufficient for angles closed less than 180 degrees. Additional goniosynechialysis does not appear to enhance IOP reduction more than phacoemulsification alone. Be aware that glaucoma surgery for PCACG places the eye at risk for subsequent postoperative malignant glaucoma.

An additional consideration for refractory chronic angle-closure cases involves another surgical approach. While anecdotaly reported recently, cyclophotocoagulation may offer an alternative in selected cases.

While phacoemulsification and posterior chamber IOL placement has been clearly shown to be a very effective management for PCACG and co-existing cataract, the role of clear lens extraction (EAGLE) study—a prospective randomized clinical trial now underway—will compare the safety and effectiveness of LPI and medical therapy to clear lens extraction for patients with newly diagnosed PCACG. It is hoped that the results of EAGLE will help guide the management of these challenging patients.

Clinical Pearls

- After the anterior chamber angle has been successfully opened by LPI, the IOP may still be elevated. Many will erroneously think that the patient has now developed primary open angle glaucoma. In actuality, the trabecular...
mesenchymal cells has been damaged by the chronic appositional closure. This situation is comparable to the trabecular meshwork dysfunction seen in angle recession glaucoma.

• Gonioscopy must be done on all open angle glaucoma patients at least every two years to ascertain that the patient is not developing a concurrent angle closure mechanism.

• While it is not advocated to intentionally dilate an eye with PCACG, it is likely not to harm the patient if done unintentionally. Many patients have been dilated inadvertently without knowing the status of the angle, and there are often no ill effects.

UVEITIC GLAUCOMA

Signs and Symptoms

Patients with uveitic glaucoma typically fall into one of two categories: those that develop acute anterior uveitis replete with pain, photophobia and lacrimation, and those experiencing lesser symptoms from chronic uveitis.1-4

Younger patients usually demonstrate greater amounts of inflammation, with uveitic glaucoma developing secondary to acute disease. On the other hand, older patients frequently exhibit lesser amounts of inflammation, with glaucoma developing more commonly from chronic disease, often with contributory long-term steroid use.1

One study reported the incidence of secondary intraocular pressure (IOP) elevation occurs in 18% of eyes with uveitis.4 As a rule, elevated IOP is a manifestation of chronic intraocular inflammation rather than acute anterior uveitis. In this particular study, the IOP elevation occurred from uveitis in 19% of patients overall, with 12% of acute cases and 26% of chronic cases being responsible.5

Another study noted raised IOP overall in 42% of eyes with uveitis, with IOP elevation occurring in 26% of eyes with acute anterior uveitis and 46% in eyes with chronic uveitis.1 In many cases, use of topical corticosteroids contribute to the rise in IOP, especially in chronic cases.1,4

References

Biomicroscopically, there will be varying levels of inflammation—from few inflammatory cells and flare in chronic anterior uveitis (often in older patients), to plasmoid aqueous in acute disease in younger patients. Occasionally, secondary IOP elevation can occur in association with posterior uveitis as well.4,6 Structural changes such as posterior synechiae, secluded pupil with pupil block and iris bombé, angle closure and peripheral anterior synechiae (PAS) are all possible findings.1-4 IOP elevation may be modest (not requiring intervention) or dramatic, with possible rapid damage ensuing to the retinal nerve fiber layer (RNFL), optic disc and visual field.

Pathophysiology
There are a plethora of possible pathophysiologic mechanisms accounting for the elevation of IOP in patients with uveitis. Secondary IOP elevation occurs from abnormal aqueous humor dynamics precipitated by increased protein content and increased aqueous viscosity. This, combined with other factors, leads to a reduction in outflow through the trabecular meshwork.

The anterior chamber angle may be open or closed. In the case of a closed angle, there may be pupil block present due to extensive posterior synechiae. Gonioscopy is crucial in determining the precise mechanism of uveitic glaucoma. In cases of extensive posterior synechiae, the pupil becomes secluded, leading to pupil block, iris bombé and secondary angle closure, with PAS forming quickly. However, pupil block and iris bombé are not required for a patient with uveitis to develop synechial angle closure. Due to sticky inflammatory debris accumulation and fibrin membrane formation in the angle itself, PAS form and extend in a zipping, rapidly creeping fashion, producing angle closure by creating an environment that allows the iris to be “stuck” against the Schwalbe’s line of the cornea. Here, patients with deep anterior chambers not otherwise at risk of angle closure encounter a secondary angle closure without pupil block.2

In yet another possible mechanism, the trabecular meshwork outflow can be impeded both by the accumulation of inflammatory cells as well as the inherent outflow inability of proteinacious aqueous humor in patients with excessive flare.7-11 Thus, the mechanism is secondary open angle glaucoma. Flare is more of a factor in the development of IOP elevation than the amount of inflammatory cells, as outflow facility is greatly reduced in patients with excessive amounts of aqueous protein, irrespective of the number of inflammatory cells.11 This is due to increased viscosity of the aqueous humor. The source of the increased protein content found in the aqueous humor of patients with uveitis is from dilated vessels in the iris and ciliary body as a result of the inflammatory cascade.12

Accumulation of inflammatory cells can unquestionably impede aqueous humor outflow through the trabecular meshwork. However, the inflammatory cellular debris also leads to cellular depopulation of the trabecular meshwork. This is more significant than simple blockade of the trabecular meshwork by inflammatory cells.2 Outflow impedance is also increased by release of inflammatory mediators that alter trabecular meshwork cell function and composition.2

Though unsubstantiated by histological evaluation, there may be direct inflammation of the trabecular meshwork itself (trabeculitis), leading to a decreased ability to filter aqueous humor. This is suggested by conditions such as glucocorticoidic crisis, where the IOP may be dramatically elevated despite minimally detectable anterior chamber inflammation. Finally, corticosteroids may also contribute to the IOP rise in uveitic glaucoma. While a clinically significant steroid-induced rise in IOP may take several weeks, the response may be shorter in cases involving uveitis where abnormalities in the trabecular meshwork and alteration of aqueous humor composition and dynamics are already occurring.

The increased prevalence of glaucoma in chronic uveitis reflects the cumulative effects of inflammation and steroid use. In older patients, minimal amounts of inflammation may overcome a trabecular meshwork with declining function. In younger patients, severe inflammation is usually necessary to overcome a healthy, functional trabecular meshwork.2 Caution must be exercised in evaluating the possible rapid damage that can occur from uveitic glaucoma. Normal-appearing measurements of RNFL thickness on OCT in patients with uveitic IOP elevation should be interpreted critically. Continued thinning of the RNFL and increased optic disc damage, despite intraocular pressure control in such eyes, may be due to resolution of edema of the RNFL that often occurs from uveitis.13

Management
In all cases, control of inflammation is necessary to successfully manage uveitic glaucoma. While concerns may exist about additional IOP elevation from corticosteroid use, improperly treating the inflammation—which is the root source of the glaucoma—is unwise and potentially dangerous.1,4,7-10,14

In acute anterior uveitis with heavy amounts of inflammation, loading doses of a potent steroid such as prednisolone acetate 1% every 30 minutes for several hours, followed by hourly administration while awake until initial follow-up, is recommended. Follow-through dosing every two hours while
Awake is often necessary to overtake the initial event. Alternately in recalcitrant cases, difluprednate 0.05% QID may offer better inflammatory control. Appropriate cycloplegia using atropine 1% or homatropine 5% QD-TID will serve to relieve pain and stabilize the normal blood vasculature, minimizing leaking. In many cases, IOP elevation associated with acute anterior uveitis is self-limiting and will resolve as the uveitis resolves.

Aqueous suppressants have been the mainstay of treatment of uveitis-related IOP rise. However, the efficacy of glaucoma medications may be variable and unpredictable in uveitic glaucoma. Topical beta-blockers are a viable option, though they may have poor to no effect in uveitic glaucoma. Interestingly, topical carbonic anhydrase inhibitors have been seen to work especially well in lowering the IOP in uveitic glaucoma. An alpha-2 adrenergic agonist is also an acceptable option. Oral carbonic anhydrase inhibitors (acetazolamide and methazolamide) may also be considered. Miotics must be avoided, as they increase vascular permeability and can worsen inflammation in anterior uveitis.

Prostaglandin analogs (PGAs) have long been avoided due to the concern that they may potentiate inflammation and possibly contribute to the formation of cystoid macular edema and reactivation of herpes virus in herpetic uveitis. However, little evidence indicates that PGAs disrupt the blood-aqueous barrier, and only anecdotal evidence suggests an increased risk of these rare findings. PGAs may be used in uveitic glaucoma when other topical treatments have not lowered IOP to the patient's target range. They have been shown to be effective in lowering IOP without increasing inflammation.

Studies have highlighted the role of viruses (e.g., cytomegalovirus, herpes simplex virus, and, more recently, Ebola) in the pathogenesis of uveitic glaucoma. Antiviral therapy may be beneficial in eyes with detectable viral DNA, eyes with uveitis suspected of viral origin and potentially cases unresponsive to conventional therapy. Topical ganciclovir, as well as oral acyclovir, famciclovir and valacyclovir may be employed.

In cases of uveitic glaucoma that cannot be controlled medically, surgery remains an option. Angle closure caused by pupil block is a surgical emergency necessitating laser peripheral iridotomy (LPI). However, in the face of widespread inflammation, the procedure is frequently unsuccessful, and surgical iridectomy may be necessary. Laser trabeculoplasty tends to be ineffective in managing uveitic glaucoma due to the structural alteration of the trabecular meshwork.

Trabeculectomy is a favored procedure for patients with uncontrolled uveitic glaucoma. In order to have the greatest possibility for success, inflammation must be well controlled prior to surgery. However, trabeculectomy performed without adjunctive antimetabolites has a high failure rate due to the young age of many of the patients and the active inflammation that leads to fibrosis and scarring of the sclerotomy site. For this reason, mitomycin C is frequently administered intraoperatively to reduce fibrous proliferation and scaring. Adjunctive use of this antimetabolite greatly increases the surgical success rate of trabeculectomy.

A newer approach involves the placement of a fluocinolone acetonide implant along with a glaucoma drainage tube in a single surgical session. Observed favorable results suggest that fluocinolone acetonide implantation can be safely combined with glaucoma tube shunt placement in eyes with uveitis and elevated IOP receiving maximum-tolerated, IOP-lowering therapy. It has been shown that uveitis recurrences decreased, visual acuity improved and IOP decreased with no adverse events during insertion of the fluocinolone acetonide implant and placement of the glaucoma tube shunt.
Clinical Pearls

- Increasing flare can induce an elevation in IOP, even in patients being otherwise well managed for chronic uveitis. However, it can be clinically difficult to detect increases in flare. Typically, though, patients will report diminishment of vision, which they describe as “hazy” or “smoky,” commensurate with increased aqueous humor protein content. Often, when patients report these visual symptoms, we find IOP elevations as well. This self-reporting by patients is indicative of their inflammation not being well controlled, indicating a need for steroid amplification.

- It is an error to undertreat uveitic glaucoma for fear of further raising IOP with steroid use.

- We have seen the IOP rise in uveitis to levels that could not be measured on the Goldmann applanation scale.

- Acute uveitic glaucoma can appear similar to acute primary angle closure glaucoma. Always be sure of the diagnosis of acute primary angle closure before using pilocarpine.

- Oral anti-inflammatory medications can help control the overall inflammatory condition, provided there is a noninfectious etiology for the inflammatory condition, provided cations can help control the overall closure before using pilocarpine.

- Choroidal rupture is a possible consequence following blunt trauma directly to the eye.3-7 Patients developing choroidal rupture are often younger males who are involved in activities such as ball sports that expose them to high-speed impact to the eye or adnexa. While it seems that men are more likely to experience blunt ocular trauma, one report of patients experiencing blunt orbital trauma indicated that choroidal rupture occurred more often in women.8-12 Common causes of choroidal rupture include impact injuries from paintballs, bottle corks, elastic bands, airbags and sports equipment, among numerous others.8-12

Choroidal Rupture

Signs and Symptoms

Choroidal rupture is a possible consequence following blunt trauma directly to the eye.3-7 Patients developing choroidal rupture are often younger males who are involved in activities such as ball sports that expose them to high-speed impact to the eye or adnexa. While it seems that men are more likely to experience blunt ocular trauma, one report of patients experiencing blunt orbital trauma indicated that choroidal rupture occurred more often in women.8-12 Common causes of choroidal rupture include impact injuries from paintballs, bottle corks, elastic bands, airbags and sports equipment, among numerous others.8-12

Choroidal ruptures may be single or multiple and can affect any part of the posterior segment.2,13,14 They are not typically seen acutely due to choroidal, retinal or vitreous hemorrhages after the traumatic injury.3,15 However, if...
the trauma was many years antecedent, hemorrhage will only be present if choroidal neovascularization has developed and is bleeding.16,17

Visual acuity and visual field may be unaffected, depending upon the location of the choroidal rupture and degree of collateral damage that occurred at the time of trauma. Unfortunately, choroidal ruptures often herald more significant damage throughout the eye, with poor visual results.7 Patients may have variably reduced acuity if the rupture occurred within the posterior pole. Acuity may be drastically affected in cases with subfoveal involvement.10-12,14,15

Ophthalmoscopically, a posteriorly located curvo-linear (crescent-shaped) disruption is located parallel to the ora serrata. Often, the rupture will have the concave aspect toward the disc. Many ruptures are concentric with the optic nerve and vertically oriented, consistent with a break in Bruch’s membrane.2 Typically, significant reactive retinal pigment epithelium (RPE) hyperplasia is present, giving the rupture a pigmented appearance. Often, the overlying retina will be undisturbed in choroidal rupture. However, if the RPE is disturbed and becomes hyperplastic, overlying photoreceptor dysfunction will ensue.

Two distinct tomographic patterns of choroidal ruptures have been identified on spectral-domain optical coherence tomography (SD-OCT). The first type involves a forward protrusion of the retinal pigment epithelium-choriocapillaris (RPE-CC) layer with an acutely angled pyramid or dome shape. This was associated with either a small loss of continuity of the RPE layer or elevated RPE-CC projection accompanied by a significant quantity of subretinal hemorrhage. The second type involves a larger area of disruption of the RPE-CC layer, photoreceptor inner segment/outer segment junction and external limiting membrane, with a posterior-directed, concave contour depression at that area, with downward sliding of tissues into the defect.19

Due to the subsequent disruption of Bruch’s membrane in choroidal rupture, the possibility exists for development of choroidal neovascular membranes.13,14,16,17-20 This may be a late development, which can occur years after the precipitating trauma.18,21 Several factors have been seen to be predictive of the development of choroidal neovascular membranes in choroidal rupture; namely, proximity of the rupture to the center of the fovea, length of the rupture, older age and macular choroidal rupture.13,14 Hence, patients with these factors should be monitored closely.

Management

No intervention is needed in the acute phase of choroidal rupture, as long as the sclera is intact and no rupture of the globe is present. Any acute management is directed toward concomitant traumatic uveitis, hyphema, retinal detachment or breaks, and issues pertaining to elevated intraocular pressure should they be present. Patients with choroidal ruptures should be educated about their condition and counseled to consider full-time protective eyewear (protective frame with polycarbonate lenses). The patient must be monitored funduscopically for the development of choroidal neovascularization.
The use of home monitoring with an Amsler grid may be recommended. Patients with significant blunt ocular trauma should also be monitored for angle-recession glaucoma.

Various therapeutic modalities have been used to treat choroidal neovascularization occurring from choroidal rupture. Thermal laser photocoagulation has been a mainstay for these membranes,14,15 Photodynamic therapy (PDT) has been used with success.20-22 PDT often results in reduction of membrane leakage and can completely eliminate the membrane with few adverse effects. Surgical removal of the neovascular membranes has also been reported.17 Subsequent submacular hemorrhage has been managed with vitrectomy, subretinal injection of tissue plasminogen activator and pneumatic displacement of blood with intravitreal air tamponade.23,24 Recently, intravitreal injection of anti-vascular endothelial growth factors (anti-VEGF), such as bevacizumab and ranibizumab, has shown impressive results in managing choroidal neovascularization and subretinal fluid associated with choroidal rupture. These agents are seen to be first-line therapy should choroidal neovascularization develop at any time from choroidal rupture.25-29

Patients who develop choroidal neovascularization outside of the macula are typically monitored without treatment, as these membranes will involute over time. However, any hemorrhage threatening the macula should be treated.

While choroidal rupture involving the macula tends to have a poor visual prognosis, cases of patients with foveal choroidal ruptures regaining central vision over a protracted recovery period have been reported.30 Incidents of early enlargement of choroidal rupture with subsequent loss of vision by expansion to the foveal region have also been documented.31

Clinical Pearls

• As the retina overlying a choroidal rupture may be unaffected, patients may retain excellent visual function and present asymptptomatically years after the trauma.

• Choroidal neovascularization can occur years after the initial trauma.

• Choroidal neovascular membranes resulting from choroidal rupture may spontaneously involute. For this reason, close observation may be a management option if no imminent threat to vision is present.

• Subretinal hemorrhage from choroidal neovascularization is the most common cause of late vision loss.

• Gonioscopy should also be performed at some point to rule out angle damage and an increased risk for developing late traumatic glaucoma.

• Small peripheral choroidal ruptures can be confused with lattice retinal degeneration of the retina. Lattice lesions will typically be located well anterior to the equator, while choroidal ruptures are more posterior in the fundus.

Classic beta blocker adjunctive therapy
for the right patient at the right time

The concomitant use of two topical beta-adrenergic
blocking agents is not recommended.

Indications and Usage
ISTALOL® (timolol maleate ophthalmic solution) is a non-selective beta-adrenergic receptor blocking agent indicated in the treatment of elevated intraocular pressure in patients with ocular hypertension or open-angle glaucoma.

Preservative-free TIMOPTIC® (timolol maleate ophthalmic solution) in OCUDOSE® (dispenser) is indicated in the treatment of elevated intraocular pressure in patients with ocular hypertension or open-angle glaucoma. It may be used when a patient is sensitive to the preservative in TIMOPTIC (timolol maleate ophthalmic solution), benzalkonium chloride, or when use of a preservative-free topical medication is advisable.

Important Safety Information for Istalol® and Timoptic® in Ocudose®

• Both ISTALOL® (timolol maleate ophthalmic solution) and TIMOPTIC® (timolol maleate ophthalmic solution) in OCUDOSE® (dispenser) are contraindicated in patients with: bronchial asthma; a history of bronchial asthma; severe chronic obstructive pulmonary disease; sinus bradycardia; second or third degree atrioventricular block; overt cardiac failure; cardiogenic shock; hypersensitivity to any component of the product.

• The same adverse reactions found with systemic administration of beta-adrenergic blocking agents may occur with topical administration. Severe respiratory reactions and cardiac reaction, including death due to bronchospasm in patients with asthma, and rarely death in association with cardiac failure, have been reported following systemic or ophthalmic administration of timolol maleate.

• Patients with a history of atopy or severe anaphylactic reactions to a variety of allergens may be unresponsive to the usual doses of epinephrine used to treat anaphylactic reactions.

• Timolol has been reported rarely to increase muscle weakness in some patients with myasthenia gravis or myasthenic symptoms.

• Beta-adrenergic blocking agents may mask signs and symptoms of acute hypoglycemia or certain clinical signs of hyperthyroidism. Patients subject to spontaneous hypoglycemia, or diabetic patients receiving either insulin or oral hypoglycemic agents, or patients suspected of developing thyrotoxicosis, should be managed carefully, with caution.

• In patients undergoing elective surgery, some authorities recommend gradual withdrawal of beta-adrenergic receptor blocking agents because these agents impair the ability of the heart to respond to beta-adrenergically mediated reflex stimuli.

• The most frequently reported adverse reactions have been burning and stinging upon instillation. This was seen in 38% of patients treated with ISTALOL and in approximately one in eight patients treated with TIMOPTIC in OCUDOSE. Additional reactions reported with ISTALOL at a frequency of 4 to 10% include: blurred vision, cataract, conjunctival injection, headache, hypertension, infection, itching and decreased visual acuity.

Please see Brief Summary of Prescribing Information for ISTALOL and TIMOPTIC in OCUDOSE on the following pages.

Timoptic and Ocudose are trademarks of Valeant Pharmaceuticals International, Inc. or its affiliates.

BAUSCH + LOMB
©Bausch & Lomb Incorporated.
TAPIC® 0.25% AND 0.5% (timolol maleate ophthalmic solution) in OCUDOSE® (DISPENSER)

INDICATIONS AND USAGE
TIMOPTIC® 0.25% AND 0.5% (timolol maleate ophthalmic solution) in OCUDOSE® (DISPENSER) is contraindicated in patients with (1) bronchial asthma, (2) a history of bronchial asthma, (3) severe obstructive pulmonary disease (see WARNINGS), (4) atrial bradycardia, (5) second or third degree atrioventricular block, (6) overt cardiac failure (see WARNINGS), (7) congestive shock, or (8) hypothyroidism to any component of this product.

WARNINGs
As with any topically applied drug, the drug is absorbed systemically. Patients treated with systemic beta-blocker administration may develop beta-adrenergic blocking agents or may occur with topical administration. For example, severe reactive bicyclic reactions and cardiac reactions, including death due to beta-adrenergic blocking agents may be administered concomitantly with cardiac failure, have been reported following systemic or topical administration of timolol maleate (see CONTRAINDICATIONS).

Cardiovascular Disorders: With chronic oral administration of Hydrochloric Furosemide plus timolol maleate, the systemic exposure of the medication may be reduced as compared to due to beta-adrenergic blockade may precipitate more severe failure. Beta-adrenergic blocking agents may be essential for the treatment of patients with a history of bronchial asthma, severe chronic obstructive pulmonary disease (e.g., chronic bronchitis, emphysema) of mild or moderate severity, bronchospastic disease, or a history of bronchospastic disease (other than bronchial asthma or chronic bronchitis, emphysema) of mild or moderate severity, bronchospastic disease in patients subject to spontaneous hypoglycemia or to diabetic patients (see CONTRAINDICATIONS) should, in general, not receive beta-blockers, including timolol maleate. The concomitant use of beta-blockers (e.g., oral or ophthalmic) is contraindicated in patients with a history of bronchial asthma or severe chronic obstructive pulmonary disease. Patients with bronchial asthma, a history of bronchial asthma, severe chronic obstructive pulmonary disease, or who are receiving oral or topical beta-blockers (e.g., oral or ophthalmic) may require a beta-blocker should be administered with caution to patients with a history of bronchial asthma or severe chronic obstructive pulmonary disease. Patients with bronchial asthma, a history of bronchial asthma, severe chronic obstructive pulmonary disease, or who are receiving oral or topical beta-blockers (e.g., oral or ophthalmic) may require a beta-blocker.

Reproductive and fertility studies in rats demonstrated no adverse effect on male rats administered orally to rats, there was a statistically significant increase in the incidence of adrenal pheochromocytomas in male rats administered 30 mg/kg/day (approximately 42,000 times the systemic exposure following the maximum recommended human ophthalmic dose). Similar differences were not observed in rats administered oral doses equivalent to approximately 14,000 times the maximum recommended human ophthalmic dose. In a lifetime and study in which rats were given a dose of timolol maleate (the maximum recommended human ophthalmic dose) intramuscularly, there was a statistically significant increase in the incidence of thyroid nodules observed in rats. In adult rats, urinalysis difficulties, urinated on, and showed increased incidence of pulmonary adenocarcinomas. As with many topically applied ophthalmic drugs, this drug is absorbed systemically. Oral or systemic administration of timolol maleate resulted in no statistically significant increase in the incidence of mammary adenocarcinomas was associated with elevations in serum prolactin.

REPRODUCTION AND FERTILITY Studies in rats demonstrated no adverse effect on male rats administered orally to rats, there was a statistically significant increase in the incidence of adrenal pheochromocytomas in male rats administered 30 mg/kg/day (approximately 42,000 times the systemic exposure following the maximum recommended human ophthalmic dose). Similar differences were not observed in rats administered oral doses equivalent to approximately 14,000 times the maximum recommended human ophthalmic dose. In a lifetime and study in which rats were given a dose of timolol maleate (the maximum recommended human ophthalmic dose) intramuscularly, there was a statistically significant increase in the incidence of thyroid nodules observed in rats. In adult rats, urinalysis difficulties, urinated on, and showed increased incidence of pulmonary adenocarcinomas. As with many topically applied ophthalmic drugs, this drug is absorbed systemically.

Dosages above one drop of 0.5 percent TIMOPTIC (timolol maleate ophthalmic solution) twice a day generally have not been shown to produce further reduction in intraocular pressure. If the patient’s intraocular pressure is not a satisfactory level maintained at any time during follow-up, the dosages should be increased to one drop of 0.5 percent TIMOPTIC (timolol maleate ophthalmic solution) twice a day and evaluated by one or more ophthalmologists.

DOSAGE AND ADMINISTRATION
Preservative-free TIMOPTIC in OCUDOSE is a sterile solution that does not contain a preservative. The solution from one individual unit is to be used immediately after opening for the patient’s ophthalmic use and not to be opened for another use. In subsequent patients treated with same bottle of preservative-free TIMOPTIC in OCUDOSE, the ophthalmic bottle does not contain any preservative. In subsequent patients treated with same bottle of preservative-free TIMOPTIC in OCUDOSE, the ophthalmic bottle does not contain any preservative.

Pediatric Use: There are no adequate and well-controlled studies in pregnant women. Preservative-free TIMOPTIC in OCUDOSE may require a few weeks to stabilize, evaluation should include dosages above one drop of 0.5 percent TIMOPTIC (timolol maleate ophthalmic solution) twice a day generally have not been shown to produce further reduction in intraocular pressure. If the patient’s intraocular pressure is not a satisfactory level maintained at any time during follow-up, the dosages should be increased to one drop of 0.5 percent TIMOPTIC (timolol maleate ophthalmic solution) twice a day and evaluated by one or more ophthalmologists.

The following additional adverse experiences have been reported less frequently with timolol maleate ophthalmic solution 0.5% and 1%:

Cardiovascular: Arthralgia; Gastrointestinal: Abdominal pain, diarrhea, dyspepsia, nausea, and vomiting.

Incidence: Urinary tract infections.

The following additional adverse experiences have been reported less frequently with timolol maleate ophthalmic solution 0.5% and 1%:

Cardiovascular: Arthralgia; Gastrointestinal: Abdominal pain, diarrhea, dyspepsia, nausea, and vomiting.

Incidence: Urinary tract infections.

The following additional adverse experiences have been reported less frequently with timolol maleate ophthalmic solution 0.5% and 1%:

Cardiovascular: Arthralgia; Gastrointestinal: Abdominal pain, diarrhea, dyspepsia, nausea, and vomiting.

Incidence: Urinary tract infections.

The following additional adverse experiences have been reported less frequently with timolol maleate ophthalmic solution 0.5% and 1%:

Cardiovascular: Arthralgia; Gastrointestinal: Abdominal pain, diarrhea, dyspepsia, nausea, and vomiting.

Incidence: Urinary tract infections.

The following additional adverse experiences have been reported less frequently with timolol maleate ophthalmic solution 0.5% and 1%:

Cardiovascular: Arthralgia; Gastrointestinal: Abdominal pain, diarrhea, dyspepsia, nausea, and vomiting.

Incidence: Urinary tract infections.

The following additional adverse experiences have been reported less frequently with timolol maleate ophthalmic solution 0.5% and 1%:

Cardiovascular: Arthralgia; Gastrointestinal: Abdominal pain, diarrhea, dyspepsia, nausea, and vomiting.

Incidence: Urinary tract infections.

The following additional adverse experiences have been reported less frequently with timolol maleate ophthalmic solution 0.5% and 1%:

Cardiovascular: Arthralgia; Gastrointestinal: Abdominal pain, diarrhea, dyspepsia, nausea, and vomiting.

Incidence: Urinary tract infections.

The following additional adverse experiences have been reported less frequently with timolol maleate ophthalmic solution 0.5% and 1%:

Cardiovascular: Arthralgia; Gastrointestinal: Abdominal pain, diarrhea, dyspepsia, nausea, and vomiting.

Incidence: Urinary tract infections.
including death due to bronchospasm in patients with asthma, and rarely death.

5.1 Asthma, COPD: Contraindications

Istalol® (timolol maleate ophthalmic solution) 0.5%

BRIEF SUMMARY OF PRESCRIBING INFORMATION

5.2 Congestive Heart Failure: Contraindications

5.1 Potency of Respiratory Reactions Including Asthma: Contraindications

5.3 Obstructive Pulmonary Disease: Contraindications

5.4 Hypertrophic Cardiomyopathy: Contraindications

5.5 Potency of Muscle Weakness: Contraindications

5.6 Myocardial Hypertrophy: Symptoms in Patients with Diabetes Mellitus: Contraindications

5.7 Masking of Thyrotoxicosis: Contraindications

5.8 Contamination of Topical Ophthalmic Products After Use: Contraindications

5.9 Impairment of Beta-adrenergic Mediated Reflexes During Surgery: Contraindications

5.10 Angle-Closure Glaucoma: Contraindications

5.11 Cerebrovascular Insufficiency: Contraindications

6.1 Clinical Trials Experience: Adverse Reactions

7.1 Beta-Adrenergic Blocking Agents: Drug Interactions

7.2 Calcium Antagonists: Contraindication

7.3 Catecholamine-Depleting Drugs: Contraindications

8.1 Pregnancy

8.2 Lactation

8.3 Pediatric Use

8.4 Pediatric Use

8.5 Use in Specific Populations

8.6 Use in Specific Populations

8.7 Overdose

8.8 Nonclinical Toxicology

8.9 Carcinogenesis, Mutagenesis, Impairment of Fertility

9.1 Stability

9.2 Pediatric Use

9.3 Handling

10.6 Clonidine: Drug Interactions

11.5 Nervous System/Psychiatric: Adverse Reactions

11.6 Cardiovascular: Adverse Reactions

11.7 Endocrine: Adverse Reactions

11.8 Hematologic: Adverse Reactions

11.9 Metabolic/Nutritional: Adverse Reactions

11.10 Body as a Whole: Adverse Reactions

11.11 Skin: Adverse Reactions

11.12 Erythematous rash, fever combined with aching and sore throat, increased pigmentation, sweating; Albucodel® Adrenergic, Atenolol, Nifedipine/Propranolol, Verapamil, mesenteric arterial thrombosis, cardiac, colitis, Hemorrhagic. Nitrates/Propranolol: Paroxetine, terbutaline, sphencter, analgesia, Sniffing, Body as a Whole: Adverse Reactions

11.13 Drug Interactions

11.14 Precautions

11.15 Contraindications

11.16 Adverse Reactions

11.17 Adverse Reactions

11.18 Drug Interactions

11.19 Contraindication

11.20 Contraindication

11.21 Contraindication

11.22 Contraindication

11.23 Contraindication

11.24 Contraindication

11.25 Contraindication

11.26 Contraindication

11.27 Contraindication

11.28 Contraindication

11.29 Contraindication

11.30 Contraindication

11.31 Contraindication

11.32 Contraindication

11.33 Contraindication

11.34 Contraindication

11.35 Contraindication

11.36 Contraindication

11.37 Contraindication

11.38 Contraindication

11.39 Contraindication

11.40 Contraindication

11.41 Contraindication

11.42 Contraindication

11.43 Contraindication

11.44 Contraindication

11.45 Contraindication

11.46 Contraindication

11.47 Contraindication

11.48 Contraindication

11.49 Contraindication

11.50 Contraindication

11.51 Contraindication

11.52 Contraindication

11.53 Contraindication

11.54 Contraindication

11.55 Contraindication

11.56 Contraindication

11.57 Contraindication

11.58 Contraindication

11.59 Contraindication

11.60 Contraindication

11.61 Contraindication

11.62 Contraindication

11.63 Contraindication

11.64 Contraindication

11.65 Contraindication

11.66 Contraindication

11.67 Contraindication

11.68 Contraindication

11.69 Contraindication

11.70 Contraindication

11.71 Contraindication

11.72 Contraindication

11.73 Contraindication

11.74 Contraindication

11.75 Contraindication

11.76 Contraindication

11.77 Contraindication

11.78 Contraindication

11.79 Contraindication

11.80 Contraindication

11.81 Contraindication

11.82 Contraindication

11.83 Contraindication

11.84 Contraindication

11.85 Contraindication

11.86 Contraindication

11.87 Contraindication

11.88 Contraindication

11.89 Contraindication

11.90 Contraindication

11.91 Contraindication

11.92 Contraindication

11.93 Contraindication

11.94 Contraindication

11.95 Contraindication

11.96 Contraindication

11.97 Contraindication

11.98 Contraindication

11.99 Contraindication

12.1 Patient Counseling Information

12.2 Manufactured by:

12.3 Under License from:

12.4 © 2014 Bausch & Lomb Incorporated

12.5 © 2014 Bausch & Lomb Incorporated

12.6 Based on I015007

12.7 US Patent 14/040,047

12.8 © Bausch & Lomb Incorporated

12.9 © Bausch & Lomb Incorporated

12.10 © Bausch & Lomb Incorporated

12.11 © Bausch & Lomb Incorporated

12.12 © Bausch & Lomb Incorporated

12.13 © Bausch & Lomb Incorporated
ANGIOID STREAKS

Signs and Symptoms
Angioid streaks are acquired irregular breaks in Bruch’s membrane (BM), appearing as meandering, dark brown-reddish radial dehiscences emanating from the optic disc.1-12 They extend from a peripapillary ring as jagged, radiating lines coursing from the region of the disc in all directions.3-7 Angioid streaks almost always occur bilaterally and are typically confined to the posterior polar region. The pigmentation or color of angioid streaks depends on the pigmentation of the fundus, retinal pigment epithelium (RPE) and choroid. In heavily pigmented individuals, the streaks will be dark brown-red in color; in lightly pigmented individuals, the streaks will have a more reddish hue. Angioid streaks are often associated with “peau d’orange” (the dimpled peel of the orange), the characteristic appearance of RPE mottling often found in the temporal mid-periphery. Though associated with angioid streaks, RPE mottling can be found with or without them.

Angioid streaks produce no symptoms unless the fovea is involved. In fact, most of the time they are discovered serendipitously.12 If the macular area is disrupted, the patient may only notice visual distortion or metamorphopsia, without any frank loss of acuity. A more substantial incursion will cause worse visual function. Since angioid streaks are either an idiopathic finding or are associated with systemic or other ocular issues, their epidemiology is linked to those conditions with no other specific predilection or incidence.3,12

The key complication connected to angioid streaks is their propensity to provoke choroidal neovascularization (CNV).3,12 The risk for developing CNV from angioid streaks is high—more than 70% over a patient’s lifetime.12 CNV arising from angioid streaks has the potential to cause catastrophic visual loss through serous and/or hemorrhagic detachment of the macular RPE and/or neurosensory retina with subsequent disciform scarring or through development of pre-retinal or vitreous hemorrhage.3,12,13 Angioid streaks slowly enlarge in both length and width over time.3,4,12 As they grow and as the patient ages, the risk of CNV increases.3,4,12 Patients with angioid streaks are more prone to CNV formation than the normal population following blunt trauma.13 The systemic and ocular conditions most frequently associated with angioid streaks include pseudoxanthoma elasticum, Ehlers-Danlos syndrome, Paget’s disease of bone (and acromegaly) and sickle cell hemoglobinopathies. Idiopathic cases exist as well, with no systemic association or optic disc drusen.1-12

Pathophysiology
The underlying common pathology in angioid streaks is altered calcium sequestration or deposition leading to increased Bruch’s membrane brittleness.3,4,12-14 Angioid streaks represent actual Bruch’s membrane “cracking” with atrophic degeneration of the membrane and overlying retinal pigmented epithelium.3,4,12-14 Investigators have postulated that the streaks assume their shape and distribution secondary to intrinsic tractional forces along with the extrinsic forces exerted on the eye by the extraocular muscles.4 The brittleness of the Bruch’s membrane is what makes the patient more prone to CNV formation following blunt injury.13

Each of the systemic conditions associated with angioid streaks seems to uniquely contribute to the calcification of Bruch’s membrane. In idiopathic cases, the process is incompletely understood. In Paget’s disease of the bone, osseous deformities lead to binding of calcium and elastic fibers in the Bruch’s membrane.4,12 In pseudoxanthoma elasticum, calcium deposition in Bruch’s membrane precipitates degeneration of its elastic fibers.4,12 The appearance of angioid streaks in sickle-cell hemoglobinopathies has long been attributed to increased levels of serum iron. However, other anemias with increased iron levels are not associated with angioid streaks.12 The histochemical connection between homozygotic sickle-cell anemia and angioid streaks was discovered when patients with sickle cell anemia and angioid streaks were found to have calcification of Bruch’s membrane.4,12,14

Researchers looking for a common signaling pathway have examined the role of osteoprotegerin and its relationship to calcification of Bruch’s membrane.10,16 Osteoprotegerin is a key regulator in bone metabolism.15 It has also been found to have an effect in the vascular system.14 Studies suggest that osteoprotegerin is a critical arterial calcification inhibitor that is released by endothelial cells as part of a protective mechanism for their survival in certain pathological conditions, such as diabetes mellitus, chronic kidney disease and other metabolic disorders.13 Recent research has examined osteoprotegerin and its role in vascular calcification pathologies. The chemokine may have a multifactorial role or serve as a biomarker in numerous vascular diseases.15

Any time the RPE or subretinal structures are damaged, cytokines and chemo-attractants are released. When the tipping point is reached and vascular
endothelial growth factor along with other vaso-stimulating factors outnumber protective growth-inhibiting factors, CNV begins.1-7,11-14

Management
The discovery of angioid streaks should immediately provoke a more complete history with the goal of possibly uncovering one of the systemically associated diseases. Correspondence to the primary care physician should include the funduscopic discovery along with a short list of the commonly associated systemic diseases. A team approach can prevent redundant testing and ensure that an efficient laboratory workup is ordered. No treatment exists for angioid streaks themselves. Fundus photodocumentation, patient education (on the need to report sudden visual changes), home Amsler grid monitoring and biannual dilated fundus examination to rule out formation of CNV should be completed. No preventative therapy for CNV is available.

Until the advent of intravitreal anti-vascular endothelial growth factor injections (anti-VEGF), CNV from angioid streaks generally carried a poor prognosis, with a propensity for recurrence, causing poor functional outcomes whether it was treated with laser photocoagulation, transpupillary thermo- therapy, photodynamic therapy (PDT) or surgical removal.1-7,11-14 Anti-VEGF treatment has resulted in visual and anatomic outcomes far outpacing the other available options.1-7,11-14 Today, patients can expect visual stabilization in most cases, with visual improvement in many, particularly if treatment is begun early in the course of the disease. PDT in combination with anti-VEGF injections has also been used with success.1-7,13-18

Clinical Pearls
• Angioid streaks are jagged cracks in the Bruch’s membrane that radiate in all directions from the optic disc.
• The systemic associations of angioid streaks can be remembered by the mnemonic ‘PEPSIT’: pseudoxanthoma elasticum, Ehlers–Danlos syndrome, Paget’s disease of bone, sickle cell hemoglobinopathies and idiopathic.
• Angioid streaks are often discovered accidentally; they are a sign, not a diagnosis. They only cause symptoms if they radiate through the fovea or produce macular CNV.
• No treatment exists for angioid streaks, only for CNV. Patients should be counseled to report changes in vision immediately and should be monitored for CNV with dilated examinations biannually.
• A home Amsler grid should be dispensed for intermittent ongoing patient self-reevaluation.

RETINOPATHY OF PREMATURITY

Signs and Symptoms
Retinopathy of prematurity (ROP) is a potentially blinding complication of prematurely born infants (30 weeks gestational age or younger) and small infants of low birth weight (1,500 grams [3 pounds, 3 ounces] or smaller; the threshold weight varies with sources).1-5 It has been estimated that 50,000 children worldwide are blinded by the sequelae of ROP each year.1 A spectrum of ophthalmic findings exists in ROP from minimal—which do not affect vision—to bilateral tractional retinal detachment with total blindness.4 ROP progresses in two phases. The first begins with delayed retinal vascular growth after premature birth and evolves with partial regression of the existing retinal vessels.2 The second is induced by hypoxia resulting in pathological retinal vessel growth.3-11 The major risk factors for ROP are prolonged exposure to supplemental oxygen therapy, shortened gestation period and low birth weight.3-4,13,15 There is no racial or gender predilection, although infants of African-descent with ROP seem to progress through the stages at a slower rate, and males of all races seem to progress faster.12-15

ROP is the result of a staged process that exaggerates the effects of retinal maldevelopment.1-11 The stages of the process progress sequentially in describing the severity of disease. Stages 1 and 2 represent early ROP. Stage 3 describes the vascular phase in which neovascularization occurs. Stages 4 and 5 represent...
the fibrovascular phase, with the formation of traction and retinal detachment. In adults, inactive disease may manifest as a dragged optic disc, retinal vessels from peripheral traction and an ectopic macula.

The International Classification of ROP (ICROP) committee provided the standards for clinical assessment based on severity (stage) and anatomic location (zone).7,10,11

Stage 1 disease is defined by the appearance of a retinal demarcation line at the junction of the vascularized retina posteriorly (towards the posterior pole) and nonvascularized retina anteriorly. Visible peripheral retinal vessels may begin to appear tortuous.

Stage 2 ROP occurs when the demarcation line thickens into a ridge containing tufts of malformed vessels. The vitreous may also become hazy. “Plus disease” is defined by engorgement of posterior pole retinal vessels induced by increasingly progressive peripheral retinal vascular stasis. Plus disease is a sign the process is rapidly progressing and is noted by adding a “+” after the staging (i.e., Stage 2+).

Stage 3 disease is defined by fibrovascular proliferation with or without vitreous hemorrhage and increased retinal traction.

Stage 4 ROP is characterized by tractional retinal detachment (RD).

Stage 5 disease is defined by total RD. The advancement of internal fibrosis creates the appearance of leukocoria and is called retrolental fibroplasia. As vascular stasis increases, the iris vasculature may become tortuous.7,10,11

The second component of nomenclature is the anatomic location defined by a zone. Zone I is defined by a circle within the posterior pole that is created by placing its center in the middle of the optic disc and extending its radius to a length that is twice the distance from the center of the disc to the center of the fovea. Zone II is a circle with the same center as Zone I. It extends nasally to the ora serrata. Zone III is the residual temporal crescent of retina anterior to Zone II. The proper nomenclature of ROP includes both the stage and zone. “Threshold ROP” requires intervention. It is defined as Stage 3+ disease (fibrovascular proliferation with or without vitreous hemorrhage and increased retinal traction with engorgement of posterior pole retinal vessels) in Zone I or II occupying at least five contiguous clock hours or eight non-contiguous clock hours of retina. In this situation, there is greater than 50% chance for RD.7,10-14 The early treatment of high-risk ROP (ETROP) study defined “pre-threshold” disease and determined that treating these cases before they reached “threshold” parameters provided a significant anatomic and functional benefit.12-14 “Pre-threshold” ROP was defined as any ROP in Zone I that was less than threshold disease; or in Zone II, Stage 2 with plus disease; or Zone II, Stage 3 disease without plus disease; or Zone II, Stage 3 with plus disease but fewer than five contiguous or eight cumulative clock hours.14

Researchers have been able to determine that genetic makeup may protect some infants. The opposite is also true; unfavorable genetic markers, such as those that code for a lighter pigmented retinal pigment epithelium (RPE) increase susceptibility.15

Pathophysiology

The underlying cause for ROP is prematurity and low birth weight.1-16 Both factors lead to retinal vascular underdevelopment. The human retinal vasculature is not complete until the normal gestational period is reached.7 Prematurely born infants have incomplete vascular coverage of the retina.11 Medical technology has increased the survival rate of smaller, younger babies, allowing ROP to continue as a significant problem.1-16

Retinal and choroidal angiogenesis along with tractional retinal detachment are the major causes of vision loss.15,19 Retinal angiogenesis occurs after the withdrawal of supplemental oxygen therapy creates relative retinal hypoxia.1,2,4-7,15,19,20 The stimulus causes upregulation of growth factors, integrins and proteinases.1,2,4-7,15,19,20-21 This results in endothelial cell proliferation and migration.15,19,20 When the tight balance between angiogenic factors and endogenous angiogenesis inhibitors—which helps to keep the angiogenic process under control—is upset, neovascularization, vascular fibrosis, retinal traction and retinal detachment can occur.2,7,15,19 Endothelial cell proliferation and reduced retinal vascular flow contribute to formation of the “plus” variation, which signals an aggressive process and likelihood of neovascular consequences.1,2,4-7,15,19,20

Supplemental oxygen for premature and low birth weight infants contributes to ROP through the dysregulation of vascular endothelial growth factor (VEGF).2,7,15,19-21 The supplemental oxygen in early phase ROP (Phase 1 ROP) leads to hyperoxia. This stimulus leads to suppression of VEGF, which inhibits normal vessel growth.21 The poor vessel growth leads to retinal anoxia.21 When the supplemental oxygen therapy is discontinued, elevated levels of VEGF and aggravated retinal hypoxia in Phase 2 ROP precipitate pathological vessel proliferation.1,2,4-7,15,19,21-25

Insulin-like growth factor 1 (IGF-1) is also a factor in ROP.2,15 IGF-1 in premature babies seems to have a direct...
correlation with the severity of clinical ROP. IGF-1 acts as a permissive factor by allowing maximal VEGF stimulation of vessel growth. Lack of IGF-1 in preterm infants prevents normal retinal vascular growth in Phase 1 of ROP. As infants mature, rising levels of IGF-1 in Phase 2 ROP stimulates pathological neovascularization. Equally contributory is the condensation of vitreous, which exerts tractional forces onto the retina.

New data suggests that exposure to perinatal infection/inflammation is also associated with an increased risk for ROP. This effect is secondary to direct exposure to circulating products of infection and/or inflammation. Inflammation and/or oxidative stress may have the potential to modify the risk of oxygen-associated ROP. Prenatal, perinatal and postnatal systemic inflammation may contribute to a “pre-phase” ROP sensitizing of the retina, setting the stage for Phase 1 and Phase 2 ROP pathogenesis.

Some investigators have speculated that intense lighting may contribute to the worsening of ROP disease. Decreasing ambient light exposure in neonatal intensive care units for at-risk infants has no benefit in reducing its incidence or course of ROP.

Management

The diagnosis of ROP is made through bedside dilated binocular indirect ophthalmoscopy (BIO). Screening should be completed in all premature infants with less than 30 weeks gestation and infants with low birth weight (<1,500 grams). If the retinas are clearly vascularized, only one examination is required. If they are not, another examination should be completed at 33 weeks postnatally. Infants with ROP should be referred to retinal specialists to rule out the need for weekly monitoring; infants with plus disease and advanced stage disease or increased zone disease demand closer scrutiny. Infants with mild forms of ROP can be watched at two-week intervals, insuring that their fundi mature.

Vascularization of the preterm peripheral retina is a finite process; once the peripheral inner retinal vessels develop, the disease process stops. Any infant reaching “threshold ROP” should have treatment within 72 hours. ROPtool (Clarity Medical Systems) is a semi-automated computer program that analyzes input images from a computer connected to a special BIO (RetCam, Keeler Instruments). It objectively assesses the fundi for pre-plus and plus disease by measuring retinal vascular tortuosity and vessel width from fundus photographs, assisting and improving decision making.

Surgical treatment for ROP in the absence of RD is designed to regress and prevent neovascularization. While cryotherapy may have been the earliest treatment investigated for improving outcomes, it is rarely employed today. The modern approach uses combinations of anti-VEGF injections and scatter laser photocoagulation (photoablation) to destroy retina, thereby significantly decreasing VEGF expression. It also simultaneously creates a chorioretinal atrophic pathway for the diffusion of choroidal oxygen into the retina. Laser destructive procedures have the deleterious side effect of reducing visual field. In response to this, anti-VEGF injections have been used with success.

ROP is less likely than choroidal neovascularization from age-related macular degeneration, or retinal neovascularization from proliferative diabetic retinopathy, to necessitate repeated injections. In many instances the disease undergoes spontaneous involution after 44 weeks of age or after one treatment. Other advantages of injections include ease of administration and their ability to be performed in very sick infants, thereby avoiding the general anesthesia that would be required for the delivery of binocular indirect endo laser photocoagulation.

General guidelines for treatment not withstanding pre- and threshold disease were established by the Multicenter Cryotherapy for Retinopathy of Prematurity (CRYO-ROP) trial, and include, but are not limited to: Zone I, any stage ROP with plus disease; Zone I, Stage 3 ROP with or without plus disease; and Zone II, Stage 2 or 3 ROP with plus disease. Cases with retinal detachment are treated with vitrectomy or scleral buckling; vitrectomy is preferred whenever possible.

Clinical Pearls

- It has been estimated that 50,000 children worldwide are blinded by the sequelae of ROP each year.
- The critical risk factors associated with ROP are prematurity, prolonged exposure to supplemental oxygen and low birth weight.
- Vascularization of an infant’s peripheral retina is a finite process; once the peripheral retinal vessels develop, the ROP disease process stops.
- The general pathophysiology of ROP is intuitive; prematurity causes incomplete retinal vascularity, and supplemental oxygen given to premature infants creates relative retinal hyperoxia. The metabolic result suppresses retinal vessel growth, and removal of the supplemental oxygen in the setting of poor retinal vessel development leaves the retina in a comparative hypoxic state provoking vessel proliferation, tortuosity (plus disease), neovascularization, vitreoretinal traction, vitreous hemorrhage and, ultimately, retinal detachment.
- Treatment of high-risk, pre-threshold disease reduces the risk of RD by 50%. Early treatment of ROP reduces poor outcomes and increases function significantly over the patient’s lifetime.
• Treatment is accomplished by combinations of laser ablation and anti-VEGF injections. Retinal detachments are repaired with vitrectomy and scleral buckling.
• Other causes of leukocoria include Coats’ disease, persistent fetal vascular syndrome (formerly known as persistent hyperplastic primary vitreous), tumor, cataract, chorioretinal infection (toxoplasmosis, toxocariasis) and congenital retinoblastoma.
• In mild ROP, the condition may actually be first diagnosed in adults with characteristic dragged disc, ectopic macula and mild acuity reduction.

8. Stahl A, Göpel W. Screening and treatment in retinopa-
y of prematurity. Deuch Arztl Int. 2015;113(3):730-5.
11. ICROP Committee. An international classification of retinopathy of prematurity. The committee for the class-
12. Klinik JD, Biglan AW, Gordon RA. Early retinal ves-
13. Early Treatment For Retinopathy Of Prematurity Cooperative Group. Revised indications for the treatment of retinopathy of prematurity: results of the early treat-
15. Cavalcanti G, Filipp L, B pandi P, et al. The pathophysio-
18. Jorge EC, Jorge EN, D Bibi R. Early light reduc-
19. Das A, McGuire PG. Retinal and choroidal angiogene-
23. Cabrera MT, Friedman SF, Hartnett ME, et al. Real-
27. CRYO-ROP Committee. Multicenter trial of cryo-

SOLAR RETINOPATHY

Signs and Symptoms
Solar retinopathy, photo-macularopathy, edipe retinopathy and foveomacular retinopathy are all synonymous terms connot-
ing retinal (specifically foveal) damage resulting from direct or indirect sun gazing, possibly during a solar eclipse or even on a normal day.1,8 The thermal effect of a bright operating microscope light, prolonged exposure to direct and indirect ophthal-moscopy light, exposure to tanning bed lights without protective goggles, unprotected arc welding, pro-
longed direct exposure to a laser pointer and solar viewing through an incorrectly prepared telescope can also produce retinal damage similar to that of solar exposure.1,9-16
Solar retinopathy can present vari-
ably; it can be unilateral or bilateral,
with asymmetric manifestations based on length of observation time, the
dominant eye, “eye switching” or the amount of squint during the observa-
tion time.1,6 Damage can be skewed by oculo-anatomic dissimilarities between the eyes, such as media clarity, an intra-
ocular lens, and an irregular, dilated or miotic pupil.1,6-15 Other reasons for this unusual exposure are: sun gazing as part of a religious ritual or for holistic healing, accidental exposure from unprotected sunbathing, taking photosensitizing medications such as tetracycline, mental illness or a chemically altered state (e.g., drugs, alcohol).1,3-5 Temperature, ozone and latitude can influence solar inju-
ries.6,17
Many patients with solar retinopathy
will initially deny sun gazing, making the diagnosis challenging.6,8 While no gender or racial predilections exist, young people are the most susceptible, second-
ary to the clarity of their media and a lack of knowledge and experience.3 The general incidence of solar retinopathy is low.1-11
Signs and symptoms of solar reti-
noptathy often develop a few hours after exposure, similar to the appearance of a hemato-ma following blunt trauma.1,6,15 Patients present with some form of visual impairment—usually reduced visual acuity from 20/40 to 20/80, which may improve after some recovery time.1-16 As the injury evolves, the acuity may drop to levels of 20/200 or worse with observable metamorphopsia (facial and traditional Amsler grid), glare, central or paracentral scotoma, and migraine headache or eye ache.1,7,10,16
Like the symptoms, physical signs of injury require time to develop. Hours after exposure, the macula may still appear normal upon ophthal-moscopic examination and photodocumentation.2-7 After 24 hours, the foveal reflex is often lost.2,7,12 The retina may or may not exhibit edema, but the macular RPE often demonstrates a round (shape of the sun or whatever was being viewed), mottled, gray thickening.2,7,12,16 Early
VITREOUS AND RETINA

changes tend to fade, leaving a small, yellow cystic lesion in the fovea with clumped RPE pigmentation.2-7,12-16 After 14 days, the lesion develops into a lamellar or juxtafoveolar defect with well-demarcated, reddish, irregular edges. While this lesion can improve over time in cases of mild injury, it generally does not.6,12 This lamellar defect is pathognomonic of solar retinopathy.6,11-14

Pathophysiology

Optical coherence tomography (OCT) and fundus autofluorescence photography (FAF), a noninvasive technique based on the properties of autofluorescent retinal fluorophores (such as lipofuscin) located in the RPE, can provide key data toward accurate diagnosis.1,6,12-15 Studies examining the findings of OCT-based platforms used for imaging the foveal alterations in solar retinopathy have identified fragmentation of the inner hyperreflective layer, and fusion of the inner and outer hyperreflective layers without spaces, as well as interruption of the inner-hyperreflective layer and a lack of reflectivity of the underlying layer.3 Juxtafoveal microcystic cavities in the outer retina, interruption of the external limiting membrane, and inner and outer segment junctions with disorganized material in the vitelliform space have also been identified in solar retinopathy.6,11-15 FAF imaging of solar retinopathy demonstrates hypautofluorescence surrounded by a relatively hyperautofluorescent ring.6 Reduced content of lipofuscin in the RPE has been described in cases of light-induced loss of photoreceptors.6

Light can damage the external ocular structures and retina by way of any combination of mechanical, thermal or photochemical means.1-16 Photochemical (i.e., actinic) damage typically occurs following prolonged low irradiance exposure lasting between 10 seconds and 90 seconds.16 The ocular optical system converges light rays onto the macula; prolonged exposure to any bright light will eventually generate a photic injury.3,6,16 Sustained direct solar observation for longer than 90 seconds, even through a constricted pupil, can raise retinal temperatures upwards of 22 degrees Celsius, far above the threshold for photocoagulation.16,18

Solar radiation, i.e., energy generated by the emission of electrons or alpha particles, is absorbed by the RPE.6,16 This energy induces toxicity, which in turn reduces the lipofuscin content of the RPE cells and decreases phagocytosis of photoreceptor outer segments.6 This physiology may explain the FAF findings of the hyperautofluorescent ring with reduced central autofluorescence.6 Damage to the photoreceptors induces a lack of normal outer segment processing, which can lead to an elevated accumulation of outer segments in the outer retina and subretinal space visible upon SD-OCT.1,13-15 Bisretinoid N-retinylidene-N-retinylethanolamine (A2E) also accumulates in the outer retina and is visible as the yellow autofluorescent lesion soon after injury.6

Another pathophysiological aspect of solar retinopathy is light-induced damage to the apical melanosomes of the RPE by highly reactive free radicals created by blue-light wavelengths.6 Susceptibility to this damage varies between individuals. As previously mentioned, young people are more vulnerable, but their capacity for regeneration is greater as well.3

Management

Solar retinopathy has a dubious prognosis; in the mildest exposures, visual acuity and field may return close to pre-exposure levels within three to seven months so long as re-injury or repeat exposures are discontinued.1-17 In cases with extended exposure and greater acuity reduction, the prognosis is poor. No treatment is available for cases that develop persistent lamellar defects associated with lost acuity, continued metamorphopsia or scotomata. Current standard of care is education toward prevention (i.e., don’t sun gaze; wear appropriate eye wear when sunbathing, tanning or welding; and only observe an eclipse or the sun through appropriate astronomical filters or devices), home monitoring with an Amsler grid to ensure stability, and office monitoring for the formation of additional retinal complications such as solar-induced drusenoid changes and the rare formation of choroidal neovascularization (CNV).1-20

Clinical Pearls

• Solar retinopathy can occur from gazing at the sun, whether during periods of bright sunshine or when the bright intensity is obscured by a lunar eclipse.

• Solar retinopathy can also result from prolonged exposure to the bright lights of ophthalmic instruments, unprotected exposure to tanning bed lighting,
and solar astronomic viewing without proper protective ocular devices.

- Embarrassment over religious beliefs, state of mind, lack of common sense or lack of preparedness may cause patients to deny sun gazing.

- The granular gray macular coloration and circular, red, edgeless lesion mimicking a retinal hole (foveal lamellar lesion) are classic findings of solar retinopathy.

IDIOPATHIC MACULAR TELANGIECTASIA

Signs and Symptoms

Idiopathic macular telangiectasia (IMT), formerly known as idiopathic juxtapfoveal retinal telangiectasia (IJRT), is a retinal vascular malformation.1-9 Clinical and angiographic features along with the method for classification were first described by Gass and Oyakawa in 1982. 10,11 The lesions were further reclassified by Gass and Blodi in 1993.1,3 Yannuzzi and associates described their features visible with optical coherence tomography (OCT), contributing to the original classification by Gass and reviewed the method of classification, ultimately restaging the entity.1 IMT remains the current terminology used.1-11

The symptoms associated with all forms of IMT are variable, painless disturbances in vision.1-15 When lesions do not affect the macula and do not occur on the visual axis, signs are present with an absence of symptoms. When the lesions enlarge, exude, bleed or induce the formation of choroidal neovascularization (CNV) in or around the fovea, symptoms can range from metamorphopsia and reduced acuity to relative and absolute scotomata (depending on the lesion size, the edema produced and presence or absence of intraretinal exudation) or even hemorrhage and macular hole formation.1-15 As the condition progresses, CNV and scarring processes may produce macular atrophy and lamellar or full-thickness macular holes, worsening signs and symptoms accordingly.1

IMT is observable as a grayish discoloration of the affected retinal region, with loss of retinal transparency.1,15 Additionally, perifoveal hemorrhage or exudation is possible. The affected area is often temporally adjacent to the fovea.1

In the earliest stages of all subtypes, juxtapfoveal vessels will be absent or barely evident on clinical examination and OCT imaging. Fluorescein angiography (FA) or optical coherence tomography angiography (OCTA) is often necessary to elucidate the abnormally developing juxtapfoveal capillary network.1,11

Multiple golden-crystalline, refractile neurosensory retinal deposits may form adjacent to where the vascular anomaly is developing. Diagnosis can be challenging at this stage, since talc and tannoxan are also capable of producing crystalline retinopathy.5 Intraretinal, round, yellow spot lesions measuring between 100µm and 300µm in diameter, similar to those seen in the adult form of vitelliform foveomacular dystrophy or Best’s disease, occur in up to 5% of cases of IMT.7 Ecstatic capillaries, blunted venules, retinal pigment plaques, foveal atrophy and neurosensory complexes are all characteristics of the three subtypes and stages.15 Leakage of telangiectatic macular capillaries is a characteristic finding on fluorescein angiography (FA), and neurosensory atrophy may be detectable upon OCT imaging.

The new technology of confocal blue reflectance (CBR) imaging may permit early diagnosis.8 CBR is a fast, safe, non-invasive imaging modality that captures the fundus reflectance after illuminating it with a confocal blue light of 488nm emitted by a scanning laser ophthalmoscope.8 This wavelength accentuates the visibility of blood vessels and enhances the contrast of certain structures on the surface of the retina, rendering them easier to see compared to white-light-illuminated images. It is particularly adept at uncovering deficiencies of the Müller cells in IMT cases.8 Optical pigment densitometry may also provide useful, characteristic, stage-dependent data demonstrating retinal capillary proliferation and penetration into the retinal pigment epithelium (RPE) with depleted macular pigment density (MPD).10,11
Lamellar macular holes may develop as the result of focal atrophy of the foveolar retina.\(^7\)\(^8\) These holes are characterized by a distinct, often-circular margin in the setting of central retinal thinning that does not extend beyond the edges of the capillary-free zone.\(^1\)\(^-\)\(^3\)\(^7\)\(^8\)\(^12\)\(^13\) Full-thickness macular holes have been reported as sequelae of IMT-2 (described below).\(^1\)\(^4\) A macular hole should be suspected when visual acuity is poor and a central scotoma or metamorphopsia is reported/detected. It can be identified by ophthalmoscopic observation and supported by the Watzke-Allen test.

Pathophysiology

IMT pathophysicsiology is incompletely understood.\(^1\)\(^-\)\(^11\) IMT is categorized into types (IMT-1 and IMT-2), with each type subcategorized by various stages connoting characteristics.\(^1\)\(^-\)\(^11\) Each subtype and stage takes into account the entity’s frequency, affected gender, age of onset, laterality and retinal findings.\(^3\)\(^11\)

IMT-1 consists of aneurysmal telangiectasia characterized by predominantly unilateral capillary, venular and arteriolar aneurysms and telangiectatic abnormalities in the juxtafoveal region (1-199 µm).\(^1\)\(^-\)\(^3\)\(^10\) IMT-1a is the second most common form of the disease.\(^11\) It can occur congenitally or be acquired between the second and fifth decades of life.\(^11\) It occurs predominantly in males (90%) and is marked by unilateral macular telangiectasia with visible aneurysms.\(^11\) Symptoms are pursuant to the volume of macular edema and exudation.\(^11\) IMT-1a demonstrates visible exudation with minimal capillary occlusion. IMT-1b presents with similar findings, is more rare and typically presents in the fourth to sixth decade of life.\(^11\) Recently, a new variant was reported and tentatively classified as IMT-1c, characterized by unilateral macular telangiectasia with visible aneurysms and macular edema complicated by neovascularization similar to that seen in IMT-3 disease.\(^11\)

IMT-2a is the most commonly seen form of the disease.\(^11\) It is acquired (no genetic link known), bilateral and affects males and females equally in the third to fifth decades with macular telangiectasia that tend to induce formation of intraretinal and or occult (poorly defined on FA) subretinal neovascularization.\(^1\)\(^-\)\(^3\)\(^11\) IMT-2b is recognized for its presentation in younger subjects with a family history of IMT, and demonstrates a greater incidence of capillary occlusions on FA.\(^1\)\(^-\)\(^3\)\(^11\)

IMT-3 is rare, bilateral and associated with vascular occlusions.\(^1\)\(^-\)\(^3\)\(^11\) IMT-3a presents predominantly in women between the third and fifth decades, is acquired and is noted to exude minimally.\(^11\) IMT-3b may have a congenital vector (still under investigation), has no gender predilection and is associated with central nervous system vasculopathies.\(^11\)

While the IMT-2 subtypes have worse sequelae and prognoses with more dubious outcomes even in the setting of attempted treatment, they are an exceedingly rare form of the disease; estimated prevalence ranges from 1/1,000 to 5/100,000 people.\(^1\)\(^9\)\(^20\)

Evidence of genetic transmittance exists, but investigations are ongoing.\(^1\)\(^-\)\(^11\) Other retinal diseases, such as Coats’ disease, can cause the formation of retinal telangiectasia, but IMT is unique, as its presentation is limited to the parafoveal area without any specific inciting cause.\(^3\)\(^11\)

Some investigators have hypothesized that the condition is in fact a variant of Coats’ disease.\(^1\)\(^-\)\(^3\)

Defective Müller cells, which play a role in the storage and metabolism of macular pigment, are theorized to play a role in the formation of highly reflective intraretinal crystalline deposits.\(^7\)\(^8\) Deposit formation neither correlates with disease severity nor predicts its course.\(^7\) Stellate intraretinal pigmented black plaques composed of hyperplastic RPE cells may develop, creating intraretinal architecture that promotes development of the clinicopathologic feature known as right-angled vessels.\(^1\)\(^-\)\(^3\)\(^7\)\(^8\) Other investigators have documented histopathological abnormalities in retinal vessels, including vascular ectasia as well as pericyte and endothelial cell degeneration.\(^19\)

CNV develops as a consequence of intraretinal injury.\(^1\)\(^-\)\(^7\) Uregulated chemokines and cytokines provoked by the disease’s course (crystalline deposition, pigment plaque formation, exaggerated exudation, vessel and neuronal degeneration, and intraretinal and subretinal bleeding) induce CNV growth.\(^17\)\(^19\)

Subretinal hemorrhage, cystoid macular edema, lipid hard exudates, disecrom scarring and retinochoroidal anastomosis all produce rapid significant vision loss with some form of permanent visual disability.\(^3\)\(^7\)\(^8\)\(^15\)\(^17\) Unlike choroidal neovascularization in age-related macular degeneration (AMD), CNV in IMT is not usually accompanied by an RPE detachment.\(^7\) Further, the size of IMT CNV compared to the CNV produced in AMD is small.\(^7\)

At the heart of IMT pathophysiology is macular retinal pigment alteration and Müller cell depletion.\(^7\)\(^8\) Müller cells also help provide nutrition to the surrounding retinal neurons by maintaining the integrity of the blood-retinal barrier in the outer plexiform layer.\(^7\)\(^8\) Müller cells span the entire retinal thickness. They allow efficient light transmission with minimal reflection.
Research has shown no evidence of increased lipofuscin accumulation in the RPE. Immunohistochemical analysis of the IMT process has demonstrated loss of the perifoveal Müller cells. Müller cell depletion in IMT has been documented through OCT and CBR imaging.

Müller cells serve as a retinal reservoir for xanthophyll. Any pathological process that involves the cells will affect macular pigment. Since the range of blue light at approximately the 460nm spectrum is absorbed maximally by macular pigments, decreased absorption or increased reflection of blue light is detectable when pigment in the foveal and parafoveal area is depleted. This is the basis of CBR imaging and explains why CBR imaging is effective at detecting early injury in the IMT process.

OCT hyporeflective zones represent cavitary spaces secondary to Müller cell loss rather than fluid-filled cystic spaces. Pathological involvement of Müller cells decreases light transmission and creates increased retinal reflectance. Disruption of Müller cells coupled with the presence of macular or perifoveal edema and exudation released from compromised retinal telangiectatic vessels contribute to lost function. The pathophysiology also seems to confirm that IMT-2 is as much a neurodegenerative disease, as it is a vascular one. It is unclear why some IMT-2 lesions develop CNV and others do not.

Management

In nonproliferative cases where vision is unaffected, initial photodocumentation with subsequent in-home Amssler grid monitoring and biannual dilated funduscopy is acceptable. Focal laser photocoagulation, photodynamic therapy, steroid injection and anti-VEGF injections have all been attempted in nonproliferative cases where acuity is reduced secondary to refractory macular edema with mixed results.

Currently, no proven effective treatment or prevention strategy exists for visually significant IMT-2 lesions. Multiple case reports have documented the clinical benefits of anti-VEGF inhibition; given the pathophysiology of IMT-2 disease, the strategy seems intuitive. Macular holes produced by IMT processes cannot be treated; they are the result of atrophic, as opposed to tracial, processes not amenable to vitrectomy with tamponade.

Clinical Pearls

- The predominant cause of lost function in nonproliferative IMT-1 cases is macular edema.
- The predominant cause of catastrophic lost function is CNV.
- IMT is categorized into types (IMT-1 and IMT-2), with each type subcategorized by various stages concerning characteristics. Each subtype and stage takes into account the entity’s frequency, affected gender, age of onset, laterality and retinal findings.

- In nonproliferative cases where vision is unaffected, photodocumentation with both in-home Amssler grid and biannual dilated monitoring is acceptable. Focal laser photocoagulation, photodynamic therapy and anti-VEGF injections have all been attempted in nonproliferative cases where acuity is reduced secondary to refractory macular edema with mixed results.

- No proven guidelines exist for the prevention or treatment of CNV from IMT-2 lesions. Given their pathophysiology, anti-VEGF injections are being investigated.

- OCT classically shows a superficial retinal, fluid-filled cyst with an intact overlying internal limiting membrane, described as a retinal drape.

Acute retinal artery occlusions (RAO) are visually debilitating events. Categorized as branch (BRAO), central (CRAO), cilioretinal or ophthalmic, depending on the location of the blockage, they are not the result of a single disease but develop from several systemic abnormalities. As such, there is no definitive epidemiology for RAO. Instead, the epidemiology varies with systemic diseases and risk factors that cause the blockages, such as heart disease, cardiovascular disease, smoking, obesity, and other chronic or episodic contributors (bacterial endocarditis, tumors, leukemia, corticosteroid injection, polyarteritis nodosa, syphilis, blunt trauma, radiation exposure, optic nerve drusen, amniotic fluid embolism, cocaine abuse). The majority of patients with RAO are older adults.

Patients present with sudden painless monocular vision loss, either of central acuity, visual field or both. In many cases, the loss is noticed upon waking. When a branch retinal artery is involved or a cilioretinal artery is present in CRAO, patients are more likely to complain of shadows in their visual field or notice that parts of it are missing. Some patients may report that they had been experiencing episodes of transient visual loss before the current episode. While the etiology of retinal artery obstruction is primarily embolic, plaques are not always visible.

As artery occlusions develop, the funduscopic appearance will vary. As blood flow is impeded, retinal function becomes compromised immediately, though initially the retina may appear unaffected and normal. However, as the ischemia evolves, retinal arteries may become visibly narrowed. The retina will then appear pale with swelling. Nerve fiber layer hemorrhages may be present in the parapapillary area. The classic macular “cherry red spot” seen in CRAO occurs due to the absence of foveal photoreceptors and thinner anatomy in the macular region.

The classic macular “cherry red spot” seen in central retinal artery occlusion occurs due to the absence of foveal photoreceptors and thinner anatomy in the macular region.

The inner layers of the retina succumb to ischemia, with intraretinal edema and necrosis present within 70 minutes of the event.

When partial or complete retinal arterial occlusion occurs, tissue ischemia begins. Retinal ischemia initiates the process of vascular endothelial growth factor (VEGF) release with subsequent neovascularization in the anterior and posterior segments. Interestingly, neovascular complications from retinal artery occlusion are infrequent when compared to other retinal vascular diseases, such as retinal vein occlusion and diabetes, because artery occlusion causes the retinal tissue to infarct and die rather than oxygen starve. Thus, there is very little release of angiogenic factors.

Hypertension is clearly a major risk factor for the development of microvasculopathy in general. As such, it increases the risk for retinal vascular events such as retinal vein occlusion, RAO and ischemic optic neuropathy. Sickle cell disease has also been noted as an etiology of RAO. While most cases are the result of cardiac, carotid, vascular, hemodynamic or autoimmune diseases, rare instances occur in which retinal artery occlusions manifest in healthy individuals with no attributable systemic etiology found. Additionally, some cases of central retinal artery occlusion
are caused not by emboli but rather by thrombus and vascular lumen necrosis from giant cell arteritis (GCA). This condition must be considered as a possible cause of retinal artery occlusion in elderly patients in order to prevent fellow eye vision loss.2,3

Management
Retinal artery occlusion management needs to follow the same principles of treatment as any other vascular end-organ ischemic disease, which is to attempt to reperfuse ischemic tissue as quickly as possible and to institute secondary prevention early on. Thus, the key to any visual recovery in any RAO is timely intervention. Anecdotally, the potential for achieving any restoration of vision is greatest when the blockage is dislodged within 100 minutes of the onset of the first symptoms.3,16 While frequently unsuccessful, emergent treatments are designed to increase retinal perfusion by reestablishing retinal blood flow.1-4,16

The traditional mechanism of increasing intraocular pressure by aggressive digital palpation with sudden release is designed to stimulate retinal autoregulatory mechanisms. Here, as the retinal tissues sense the general hypoxia created by the digitally applied force, the retinal vasculature dilates to increase blood flow. When intraocular pressure drops and aqueous is forced from the eye, resistance to incoming blood decreases. The hope is that the emboli will be dislodged and move further down the retinal arterial system, permitting reperfusion to the critical central retinal tissue.3 Other strategies for dislodging the embolus include decreasing the resistance to ocular blood flow by reducing intraocular pressure via topical and oral medication, or paracentesis. An alternate strategy involves stimulating retinal vascular dilatation by increasing blood carbon dioxide levels, either by breathing into a paper bag, inhaling a Carboxen mixture (95% oxygen, 5% carbon dioxide) or taking sublingual nitroglycerine.3

Unfortunately, heroic measures rarely impact the final outcome. Hyperbaric oxygen therapy has shown anecdotal success at restoring vision in several case reports and series.17-20 Visual prognosis for this therapy is dependent upon the time lag from the onset of symptoms to the beginning of hyperbaric oxygenation treatment, and the time lag until retinal reperfusion begins. Hyperbaric oxygenation treatment can compensate for retinal ischemia, but the lack of glucose and accumulation of toxic metabolites is not addressed.17-20 Currently, a large number of nonresponders combined with a lack of controlled clinical trials makes hyperbaric oxygen therapy a speculative treatment at this time. Also, hyperbaric chambers are not readily available in many areas, and the treatment is often not covered by insurance.

A technique using an Nd:YAG laser to photodisrupt emboli within the central retinal artery and branch retinal arteries may help achieve rapid reperfusion of the retina.4 Translumenal Nd:YAG embolectomy (TYL) or embolectomy (TYE) has been reported as a potential procedure capable of quick deployment in cases of retinal nonperfusion secondary to embolic blockage.4 In one study following TYL, Snellen visual acuity improved by an average of 4.7 lines in 17 of 19 patients (89%), and 11 patients (58%) gained greater than four lines.5 Vitreous hemorrhage and subhyaloid hemorrhage are potential complications.4

Patients with artery occlusion must receive a complete systemic workup to uncover the underlying cause.4,15 Evaluation should include a complete blood count with differential and platelets, an erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), lipid panel, carotid artery evaluation using transcranial Doppler, prothrombin time, activated partial thromboplastin time, protein S, protein C, antiphospholipid antibody testing, antinuclear antibody and lupus anticoagulant testing, echocardiogram and transesophageal echocardiogram.9,15,23-24 Previously undiagnosed vascular risk factors have been found in 78% of all CRAO patients. Systemic arterial hypertension is the most commonly associated risk factor, while the most meaningful risk factor was ipsilateral carotid artery stenosis leading to endarterectomy. In elderly patients with systemic symptoms suggestive of GCA, obtaining ESR and CRP is emergently required.25,26

Intra-arterial thrombolysis (IAT) represents an aggressive approach to treating retinal arterial occlusions with the potential to produce superior visual outcomes compared with conventional treatments.27-29 While the strategy of using intravenous and intra-arterial thrombolytic agents such as urokinase has existed and been investigated for more than 20 years, insufficient evidence is available to support routine use of the treatment.27-30 More recently, intravenous recombinant tissue plasminogen activator has shown some success in restoring visual function.31,12 A lack of controlled clinical trials also make this a speculative treatment. The studies demonstrate best efficacy requires intervention in less than six hours from arterial occlusion.

Most importantly, there has been a paradigm shift in the evaluation and management of patients with acute RAO. American Heart Association/American Stroke Association (AHA/ASA) guidelines recommend that all patients with suspected retinal ischemia should undergo immediate brain imaging. In the period immediately following acute RAO, there is an increased risk of coronary and cerebral infarction.33,34 It has been well documented that silent brain infarction on diffusion-weighted magnetic resonance imaging (DW-MRI) is a frequent finding in patients with BRAO and CRAO.35-40 Acute ischemic stroke has been detected
in approximately 25% of RAO patients, with nearly 40% not exhibiting any neurologic symptoms or signs consistent with stroke.38 These silent brain infarctions bear a high risk of future stroke. Patients with BRAO and CRAO should undergo prompt neuroimaging and evaluation, preferably upon hospital admission to a stroke unit. Current recommendations advise to emergently refer RAO patients to a specialized stroke facility for immediate DW-MRI and evaluation.39 Many of these patients will be admitted on the spot for a comprehensive stroke assessment and management.

Clinical Pearls

- Cilioretinal arteries take their blood supply from the choroid, often emerging from the temporal optic nerve and aiding in the supply of retinal tissues in the vicinity of the macula. In the event that a CRAO occurs in the presence of a cilioretinal artery, these vessels can partially preserve function over the area of their distribution so long as the occlusion also does not affect the choroidal circulation.

- Patients with the primary antiphospholipid antibody syndrome may develop RAO as well as exhibit episodes of ocular or systemic transient ischemic attack (TIA), anterior ischemic optic neuropathy, cilioretinal artery occlusion, CRAO and ophthalmic artery occlusion. Ocular TIA, retinal vascular thrombosis and optic neuropathy are considered the ocular hallmark signs of Hughes’ syndrome. Testing for autoimmune factors and antiphospholipid antibody syndrome is especially important in younger patients with retinal arterial occlusion.

- Heroic measures to restore retinal perfusion typically fail in the majority of these cases because patients delay seeking treatment.

- Patients with RAO need to immediately undergo DW-MRI to ascertain if there is any concurrent cerebrovascular infarction or risk for debilitated stroke.

These patients need rapid referral and admission to a stroke unit. Eye care practitioners should not attempt to obtain this imaging. Acute RAO should no longer be thought of solely as an ocular condition. These patients should be considered to have a stroke.

- Identify a local facility with a stroke unit. When a patient presents with any form of RAO, time for intervention and investigation is critical.

- Never forget the possibility of GCA as a potential cause of CRAO in elderly patients.

OCULAR MYASTHENIA GRAVIS

Signs and Symptoms
Ocular myasthenia gravis (OMG) is a subset of general myasthenia gravis (GMG) with muscular dysfunction affecting only the levator and extracocular muscles. OMG has a slight male preponderance. There is a bimodal onset for women, peaking around 30 and 60 years, while men have a skewed unimodal age distribution peaking at age 70.1 GMG affects adults in 90% of cases, with the remaining 10% being children and adolescents.2 The incidence of GMG is 72:1,000,000.1 Non-Caucasian patients are typically diagnosed up to two decades earlier than Caucasians.1

Patients with OMG will present complaining of new onset ptosis, diplopia or both. Ocular signs and symptoms include intermittent pupil sparing ophthalmoparesis, including oculomotor, trochlear and abducens palsy; ptosis of the eyelid and the pathognomonic Cogan’s lid twitch (overshooting of the affected eyelid on upgaze with a final ptotic resting position after prolonged fixation in downgaze). In addition to cranial nerve palsies, presence of isolated inferior oblique, superior rectus and medial rectus underaction as well as a pseudo-internuclear ophthalmoplegia is possible.1-6 The ptosis and diplopia may be transient, fluctuating or progressive throughout the day, and may improve with rest.2,7

In patients with pure OMG, there will be no accompanying weakness of any other non-ocular skeletal muscles as seen in GMG. Approximately 53% of patients with OMG present with concurrent GMG, and 44% with OMG will progress to generalized disease within one to two years, most within one year.8 Ocular myasthenia gravis is bothersome due to ptosis and diplopia, which causes dysfunction of daily activities, but GMG is potentially life-threatening. Myasthenic crisis is the catastrophic failure of the skeletal muscles involved in respiration.9 Patients in myasthenic crisis develop acute respiratory failure and require prompt airway protection in the form of ventilation support.9

Pathophysiology
Both OMG and GMG are considered to arise from an autoimmune, antibody-mediated disorder of neuromuscular synaptic transmission as well as a paraneoplastic syndrome associated with tumors of the thymus gland or thymic hyperplasia. Approximately 10% to 15% of OMG/GMG patients have thymomas, and 30% of thymoma patients have GMG.2 Thymomas involve tumorous infiltration of the gland by nonmalignant or malignant cells.10 In nerve signal propagation, acetylcholine is released from the presynaptic nerve terminal to bind with receptors on the postsynaptic nerve terminal. After the nerve impulse has propagated, the enzyme acetylcholinesterase then degrades the acetylcholine so that it can be repackaged by the presynaptic nerve terminal into new vesicles of acetylcholine for the next nerve impulse conduction.

OMG and GMG result from an antibody-mediated, T cell-dependent immunologic attack on the endplate region of the postsynaptic membrane. Maverick antibodies occupy the postsynaptic nerve terminal, preventing acetylcholine from reaching the intended target. As the receptors, which receive the neurotransmitter acetylcholine, are degraded, the signal intended to invoke a muscle movement cannot be propagated or maintained. Thus, acetylcholine is blocked from reaching the post-synaptic receptors. Subsequently, acetylcholinesterase degrades acetylcholine, and the component parts are sequestered back into the presynaptic membrane to formulate new acetylcholine for the next action potential. This produces muscle weakness as well as rapid fatiguing and loss of stamina.

Management
Several clinical tests for suspected OMG can be performed in the office:
- A sleep test can be employed with the patient resting with eyes closed for a period of 20 minutes. As the acetylcholine builds up in the presynaptic membranes, pre-existing weaknesses will immediately improve for a short time.
- In a fatigue test, a patient with ptosis is asked to look up. As the patient fatigues, the eyelids drift down and ptosis worsens.
- Additionally, the patient can be asked to squeeze the eyes closed. If the individual lacks strength or fatigues quickly, it will become apparent as the
eyes begin to open despite the attempt to forcefully close them. This phenomenon is known as Osher’s “peek sign.”

- Finally, for patients with ptosis or ophthalmoplegia, the ice pack test can be employed. Here, a bag of crushed ice covered in a towel is placed over the affected closed eye for two minutes. Lowering the temperature slows the action of acetylcholinesterase, allowing acetylcholine a longer duration in the synaptic cleft and a greater opportunity to interact with post-synaptic receptors. This produces a subsequent improvement in function. Immediate improvement in ptosis is highly suspicious for OMG.

Ocular myasthenia gravis is diagnosed upon clinical suspicion, aided by the tests described above and confirmed with at least one of the following: edrophonium challenge, single-fiber electromyography or positivity of acetylcholine receptor antibodies. However, seronegativity to acetylcholine receptor antibodies occurs in approximately 30% of patients with OMG. These patients are instead seropositive for antibodies against the muscle-specific kinase (anti-MuSK-positive). Thus, in some patients with OMG, the diagnosis may be made based using a preponderance of evidence from clinical tests.

Three types of acetylcholine receptor antibodies may be involved: binding, blocking and modulating. They cause acetylcholine receptor loss by three mechanisms: blocking of acetylcholine binding, accelerated receptor degradation (antigenic modulation) and lysis of postsynaptic membrane induced by complement. In order to enhance sensitivity, all three should be evaluated.

Myasthenia gravis has been associated with other autoimmune diseases, so once diagnosis has been confirmed, additional laboratory work should include a computed tomography (CT) scan of the chest, antinuclear antibody (ANA) testing, a rheumatoid factor (RF) test and a thyroid panel (T3, T4, TSH). Reports of an association between OMG/GMG and thyroid ophthalmopathy, another autoimmune disease, have been documented. As such, the overlap of presenting signs and symptoms warrants testing for both OMG and thyroid ophthalmopathy, especially when cases of ophthalmoparesis and ptosis are not totally consistent with one disease or the other.

Initial treatment for symptomatic OMG is anticholinesterase medications. Pyridostigmine bromide is the most commonly used oral anticholinesterase to treat OMG and GMG. It is well tolerated at low doses, with minimal cholinergic side effects. Adverse effects are gastrointestinal disturbance, diarrhea, cramping, hypersalivation, sweating and, rarely, bradycardia and arterioventricular block. Oral ambenonium chloride can be used if gastrointestinal side effects with pyridostigmine are intolerable. Many patients can achieve relief with these medications.

Immunosuppression is well accepted as part of OMG and GMG management. Glucocorticosteroids and azathioprine are first-line immunosuppressive therapy for OMG and GMG, with cyclosporine, methotrexate and mycophenolate mofetil serving as second-line therapies. Corticosteroids such as prednisone appear not only to inhibit the antibody response but also to increase acetylcholine receptor synthesis and augment the organization of the postsynaptic membrane.

The second purpose of immunosuppression with prednisone, beyond improving function, is to reduce conversion of pure OMG to GMG. Controversies have arisen over a lack of randomized, controlled clinical trials, and varying reports as to the degree of reduced conversion achieved. However, it is well accepted that immunosuppression for patients with OMG reduces the conversion to GMG. It seems advantageous to use oral prednisone especially in the first year as well as the second year to reduce the risk of conversion to GMG. However, the benefits must be balanced against the adverse effects of long-term immunosuppression, including the possibility of developing diabetes, osteoporosis or a malignancy. While the features of OMG may only mildly affect quality of life and may be tolerable to patients, the systemic implications are profound, and immunosuppression may be disease altering. As such, once diagnosed or strongly suspected, patients with OMG should be in the hands of a neurologist or neuromuscular specialist specifically skilled in management.

As OMG and GMG can be a paraneoplastic syndrome in concert with thymoma, thymectomy is considered part of the therapeutic armamentarium. Multiple observational studies have shown that thymectomy can potentially hasten stabilization of the disease, reduce the need for corticosteroids and, in some patients, lead to complete remission. However, no clinical trials have compared the efficacy of thymectomy to standard immunosuppressant therapy to indicate which therapy is more efficacious. The guidelines for patients without thymoma are even less clear.

In patients where visually debilitating ptosis following anticholinesterase and immunosuppressive therapy is maintained, surgical correction can be attempted. The frontalis sling with a frontalis orbicularis occuli muscle flap has good cosmetic results, with functional outcomes that improve quality of life.

Clinical Pearls
- Most cases of OMG will progress to GMG within two years, and many within just one year after onset. However, some patients will convert...
beyond two years. Patients shouldn’t be misled into believing that they will have a good prognosis if they haven’t converted to GMG after two years.

- **Ocular myasthenia gravis** never affects the pupil. If ptosis and ophthalmoplegia are present, and the pupil is affected, MG is not the cause.

- **Ocular myasthenia gravis** can mimic cranial nerve III, IV and VI palsy as well as internuclear ophthalmoplegia, thyroid eye disease, and isolated recti or oblique muscle paresis.

- As OMG can be seronegative for acetylcholine receptor antibodies and may be false-negative on edrophonium challenge, the diagnosis may hinge on clinical supporting tests such as rest and ice pack.

- The ice pack test works exceptionally well with ptosis as the presenting weakness, but is less effective and diagnostic when ophthalmoplegia is the presenting sign.

- The late, great Lawrence Gray, OD, used to remind us of the rest-fatigability-forced closure-and-ice pack testing for OMG by saying, “Sleep ‘em, tease ‘em, squeeze ‘em and freeze ‘em.”

CRANIAL NERVE III PALSY

Signs and Symptoms

A patient with acute cranial nerve (CN) III palsy will usually present with sudden-onset unilateral ptosis (or rarely, a bilateral ptosis if the damage occurs to the third nerve nucleus) and ophthalmoplegia. Eye or head pain may be present, depending upon the cause.1-3 The patient often complains of double vision, though in some cases the diplopia may be masked by the ptosis, which obscures the vision in the affected eye.

If the lid is manually elevated, the diplopia can be elicited. Visual acuity is typically unaffected unless the provoking lesion occurs in the superior orbital fissure, causing simultaneous cranial nerve II involvement.

CN III palsy produces a noncomitant deviation. Limitation of elevation, depression and/or abduction is possible, as well as an underaction of the superior, inferior, medial recti muscles and inferior oblique muscle.3,4 The underaction of these muscles may be complete or incomplete.5-7 This leads to the diagnostic pattern of a CN III palsy, which is a reversing hyper-deviation from up to downgazes, and an exo-deviation, which increases across from the vertically limited eye. Complete CN III palsy will present with an eye that is down and out; however, partial CN III palsy may not have this posture. Total involvement of the levator palpebrae superioris and all extraocular muscles subserved by CN III is termed a complete CN III palsy. Patients with some degree of involvement (but not total paralysis) of the extraocular and levator muscles are said to have an incomplete CN III palsy or partial CN III palsy.3 In any case of CN III palsy, the pupil may be dilated and minimally reactive to light (pupillary involvement), totally reactive and normal (pupillary non-involvement) or may be sluggishly responsive (partial pupillary involvement).3,4,7-10

Complete pupil sparing cranial nerve III palsy due to ischemic vascular disease.
Various neurological signs may present concomitantly with the development of CN III palsy. Patients may additionally have contralateral intention tremor, ataxia or contralateral hemiplegia, depending upon the cause and brainstem location of damage to CN III.3

Patients developing acute CN III palsy tend to be older; the condition is uncommon in children, though it does occur.7 Concurrent diabetes and/or hypertension in older patients is common.6,7,11 Occasionally, head trauma is to blame for CN III palsy development.12

Pathophysiology

The third cranial nerve arises in the dorsal mesencephalon with distinct paired subnuclei that give rise to fibers that pass through the brainstem, subarachnoid space, cavernous sinus and orbit to ultimately innervate the levator palpebrae superioris, superior rectus, inferior rectus, medial rectus and inferior oblique muscles. All subnuclei innervate ipsilateral structures, with the exception of the superior rectus (also innervating the contralateral eye) and the levator palpebrae superioris, which has a single subnucleus innervating both eyelid muscles.3,13 In concert with the third cranial nerve nucleus is the Edinger-Westphal nucleus, which controls the pupil sphincter and ciliary body muscles. Pre-synaptic, parasympathetic pupillary fibers course on the outside of CN III.

Third nerve palsy results from damage to the oculomotor nerve anywhere along its route: the nucleus in the dorsal mesencephalon, fascicles in the brainstem parenchyma, the nerve root in the subarachnoid space, the cavernous sinus or the posterior orbit.3,13 Damage to the third nerve nucleus is rare and results in an ipsilateral third nerve palsy with contralateral superior rectus underaction and bilateral ptosis. Damage to the third nerve fascicles emerging from the CN III subnuclear complex and passing through the parenchyma of the mesencephalon can result in an ipsilateral third nerve palsy with contralateral hemiparesis (Weber’s syndrome), contralateral intention tremor (Benedikt’s syndrome), contralateral ataxia (Claude’s syndrome) or ipsilateral cerebellar ataxia (Nothnagel’s syndrome). Vascular infarct, metastatic disease and demyelination are the common causes of brainstem involvement.7,13

Once the CN III fascicles emerge from the brainstem, they form the nerve proper and travel a course through the subarachnoid space parallel to the posterior communicating arteries. Damage to the third nerve within the subarachnoid space produces isolated third nerve palsy. The main concern in an isolated CN III palsy occurring within the subarachnoid space is compression of the nerve by an expanding aneurysm of the posterior communicating artery or other adjacent vessel such as the internal carotid, basilar, anterior communicating or temporal arteries, though to a lesser extent than from the posterior communicating artery.5,9,14-16 Up to 30% of isolated CN III palsies occurring secondary to damage within the subarachnoid area are due to aneurysms.7,11 Vasculopathic infarct, often associated with concurrent diabetes or hypertension, accounts for 35% of cases of isolated CN III palsy.11

Aneurysmal compression is marked by head or retro-orbital pain and anisocoria greater in bright illumination. There may be ipsilateral pupil dilation as the expanding aneurysm compresses the pupillomotor fibers surrounding CN III as well as pain-sensitive dura and other such structures. Additionally, oozing blood will irritate meningeal tissue. In many of these cases, the palsy will be incomplete.

Approximately one-third of patients with CN III palsy from vascular infarct manifest a small degree of anisocoria of typically less than 1mm. In contrastinction, aneurysmal compression typically causes more than 2mm of anisocoria.11 Additionally, patients developing CN III palsy from aneurysmal compression may initially not present with anisocoria or pupil involvement.5,8-10 These patients typically present initially with an incomplete palsy that evolves and develops pupil dilation over several days.7,11

Damage to the third nerve in the cavernous sinus, superior orbital fissure or posterior orbit is less likely to present as an isolated palsy due to the confluence of other structures within these areas. Cavernous sinus involvement will also include possible concurrent palsies of cranial nerve IV, VI, V1 and V2, as well as an ipsilateral Horner’s syndrome. The most common causes of damage in these areas include metastatic disease, inflammation, herpes zoster, carotid artery aneurysm, pituitary adenoma, pituitary apoplexy and sphenoid wing meningioma.2,3,7

Management

Management of third nerve palsy in the adult depends upon the associated findings and etiology. In complicated third nerve palsies where other neural structures are involved with additional symptoms and findings, the patient should undergo magnetic resonance imaging (MRI) of the brain to assist in ascertaining the etiology. The scan should be directed to the anatomical location as dictated by the associated findings described above.3

In cases of isolated, complete third nerve palsies that have no pupillary involvement, where the patient is over 50 years of age, the main cause is predominantly ischemic vascular infarct. Giant cell arteritis is also a potential etiology, mimicking a vasculopathic, pupil-sparing CN III palsy.17 Indicated testing includes MRI and magnetic
Incomplete cranial nerve III palsy resulting from an intracranial aneurysm.

There has been controversy regarding the need for neuroimaging of isolated, pupil-sparing CN III palsy in elderly patients with vascular risk factors presumed to have an ischemic etiology. It has been recommended that such cases do not warrant additional evaluation. Murchison et al. noted in a prospective analysis that the diagnostic yield of neuroimaging isolated cranial neuropathies was extremely low and did not justify the expense, as the clinical management was not altered in a single case of 93 patients discovered to have a non-vascular cause. However, Tamhankar and associates looked at 109 patients age 50 or older with acute isolated ocular motor nerve palsy from a presumed microvascular cause and subjected them all to MRI imaging and serologic studies, and found a cause other than vascular ischemia in nearly 17%. The alternate etiologies included midbrain infarction, neoplasms, inflammation, pituitary apoplexy and GCA. However, when excluding patients with GCA and CN III palsy, the likelihood of an alternate non-microvascular cause of isolated CN IV and VI palsy was less than 5% combined, suggesting that extensive workup for these patients may be unnecessary and best reserved for patients with CN III palsy.

In cases of CN III palsy caused by subarachnoid aneurysm, immediate neurosurgical intervention is necessary. Common treatment involves direct clipping of the aneurysm or endovascular embolization with detachable coils. Both procedures show similar levels of success in preservation of life as well as partial or complete recovery of CN III function. However, some studies suggest that microsurgical clipping of aneurysms is more likely to result in complete nerve function recovery and may be preferable in cases of ruptured aneurysms. Partial CN III palsies are more likely to have a complete return to function following surgical treatment than complete palsies.

Even following successful treatment, a significant number of patients will have limited return of CN III function. In these instances, medial transposition of the lateral rectus muscle provides a good surgical option. A modification of this procedure involves splitting of the lateral rectus into two halves followed by transposing the superior half from below the superior oblique and superior rectus, and inferior half from below the inferior oblique and inferior rectus to attach them at the superior and inferior edge of the medial rectus insertion, respectively. This gives excellent horizontal and vertical alignment in primary gaze—though, of course, limited mobility remains. The vertical component makes these procedures difficult, with a significant number of patients needing two or more surgeries.

Clinical Pearls

- Isolated third nerve palsy due to ischemic vasculopathy will spontaneously resolve and recover over a period of three to six months. If the palsy fails to resolve in this timeframe, neurodiologic studies or neuro-ophthalmologic consultation must be undertaken once again (this should have occurred at the initial presentation) in order to search for the true etiology.
- Worsening of CN III palsy through the first two weeks suggests ischemic vascular insult is not the cause.
• **Painless, complete CN III palsy** in an adult over age 50 without pupil involvement is uncommonly caused by an aneurysm.

• **Patients manifesting an incomplete, painful CN III palsy** must be suspected of having a developing aneurysm.

• **Myasthenia gravis** has the ability to mimic virtually any cranial neuropathy, including isolated non-pupillary-involved third nerve palsies. Myasthenia gravis must remain a possible diagnosis when encountering a third nerve palsy, especially when the course is variable or atypical.

• **Pain will accompany aneurysmal compression.** In ischemic vascular CN III palsies, pain is frequent (but may be absent) and is typically less severe, though this is not necessarily diagnostic.

• **Consider GCA as a cause of CN III palsy** in the elderly.

 • **Ischemic vascular CN III palsy** does not progress to develop aberrant regeneration. Features of aberrant regeneration of CN III include pupillary light-near dissociation, elevation of the upper lid on downgaze, and elevation of the upper eyelid on adduction.

• **CN III palsy from suspected aneurysm** is one of the few true medical emergencies seen in eye care. These patients must be sent to the hospital immediately for neurosurgical consultation.

• **Patient anatomy plays a significant diagnostic role.** If the artery runs very close to CN III, then a small aneurysm may cause compression and the lesion can be missed on noninvasive imaging.

Conversely, if the artery and the nerve are further apart, it may require the aneurysm to be relatively large in order to cause compression.

CRANIAL NERVE IV PALSY

Signs and Symptoms

A patient with cranial nerve (CN) IV palsy (also known as superior oblique palsy, trochlear palsy and fourth nerve palsy) will typically present with complaints of vertical or diagonal diplopia, which often becomes worse as the patient tries to read. The patient may experience an inability to look down and in. A component of horizontal diplopia is possible as a lateral phoria becomes manifest due to the vertical dissociation.1-4 The chin is often tucked downwards (moved into the field of the dysfunctional muscle) as well. The patient may note greater diplopia or visual discomfort when head tilting toward the side of the palsy. Commonly, the patient develops a compensatory head tilt opposite to the affected superior oblique muscle.

Visual acuity is unaffected, and concurrent pain is rare. Ocular motility testing with the alternate cover test will typically reveal a hyperphoric or hypertropia deviation that will increase in contralateral gaze, reduce in ipsilateral gaze, increase on ipsilateral head tilt.
and decrease on contralateral head tilt. In bilateral cranial nerve IV palsy, the patient will manifest a small hyperdeviation in primary gaze, which increases in lateral gazes, with the hyper eye being opposite of the direction of gaze. A right hyper in left gaze, reversing to a left hyper in right gaze, will likely also be present. The hyperdeviation increases on ipsilateral head tilt, manifesting as a right hyper on right head tilt and a left hyper on left head tilt.²⁴⁻⁹

A large percentage of CN IV palsies are congenital, but may not become symptomatic until later in life. With acute onset in older adults may be concurrent hypertension and/or diabetes. However, vasculopathic CN IV palsies are less frequent than vasculopathic CN VI or CN III palsies.⁹⁻¹¹ Isolated, acquired cases often include a history of head trauma immediately preceding development of the CN IV palsy. The trauma need not be major, as relatively minor injuries can precipitate CN IV palsy.²⁻³,¹²⁻¹⁴ In cases of longstanding decompensated CN IV palsy, the inciting trauma may have been many years antecedent.

Pathophysiology
The fourth cranial nerve nucleus is located in the dorsal mesencephalon. Nerve fibers decussate and exit the brain stem dorsally into the subarachnoid space. It is at this decussation in the anterior medullary velum that a bilateral CN IV palsy can occur. The nerve then courses forward to enter the cavernous sinus, superior orbital fissure and orbit to innervate the superior oblique muscle. Damage to the fourth nerve nucleus or its fascicles within the midbrain prior to the decussation produces contralateral fourth nerve palsy. Depending on the cause of the CN IV palsy in the midbrain, as well as the surrounding anatomic structures involved, evidence of a contralateral Horner syndrome may be present. If the damage also includes a more superior region of the midbrain, features of dorsal midbrain syndrome may be observed, including light-near dissociated pupils, convergence retraction nystagmus and up-gaze palsy. The main causes of damage to the fourth nerve in this area are hemorrhage, infarction, trauma, tumor, hydrocephalus and demyelination.⁹,¹⁴

The fourth nerve is especially prone to trauma as it exits the brain stem and courses through the subarachnoid space. In contrast to third nerve palsies with an etiology in subarachnoid space, fourth nerve palsies are rarely due to aneurysmal compression. The most common causes of damage to the fourth nerve in this region are trauma and ischemic vasculopathy.³ Due to the large number of other neural structures that accompany the fourth nerve as it travels through the cavernous sinus and superior orbital fissure, it is unlikely that patients will exhibit isolated fourth nerve palsy when damage occurs there. Common causes of damage to the fourth nerve in these areas are herpes zoster, inflammation of the cavernous sinus or posterior orbit, as well as meningioma, metastatic disease, pituitary adenoma and carotid cavernous fistula.¹⁵ CN IV palsy with ipsilateral Horner syndrome localizes to the cavernous sinus. Trauma to the head or orbit can cause damage to the trochlear tendon with resultant superior oblique muscle dysfunction.

Trauma and vascular disease are considered the main causes of acquired CN IV palsy.¹⁴,¹⁵ However, numerous reports of other potential, but less common, causes of isolated CN IV palsy exist, including multiple sclerosis, polycythemia vera, cat-scratch disease and, infrequently, metastatic disease.¹⁵⁻²¹

Management
If the CN IV palsy is not congenital and not associated with recent trauma, a history of past trauma should be investigated. Sometimes, fourth nerve palsy presents suddenly as an acquired case, but may actually result from decompensation of a longstanding or congenital palsy. A patient with a decompensated, longstanding palsy will often present with a compensatory head tilt away from the palsied eye. Investigating old photographs can confirm the presence of a habitual head posture. Further, patients with decompensated, longstanding fourth nerve palsies will have an exaggerated vertical fusional ability.

Longstanding fourth nerve palsies typically have a benign course and require no additional work-up or further management. In cases that are unclear, neuroimaging may assist diagnosis. Magnetic resonance imaging can demonstrate superior oblique atrophy.
and an absent trochlear nerve, aiding in diagnosis of congenital palsy presenting with sudden vertical diplopia occurring later in life due to delayed decompensation.\(^2,23\)

In the case of complicated fourth nerve palsies, i.e., those that present with other concurrent neurological dysfunction, the patient should undergo neuroradiological studies dictated by the accompanying signs and symptoms. If the patient is elderly and has a fourth nerve palsy of recent origin, an ischemic vascular evaluation should be undertaken to search for diabetes and hypertension. CN IV palsies caused by vascular infarct usually spontaneously resolves over a period of up to 10 months with no further management beyond periodic observation and either occlusion or press-on prism required.\(^2,23,24\) In elderly patients, giant cell arteritis should also be considered, and appropriate history and testing should be ordered.

In the case of isolated fourth nerve palsies caused by recent trauma, the patient should undergo neuroradiological studies of the head to dismiss the possibility of a concurrent subarachnoid hemorrhage. During the post-traumatic diplopia phase, temporary prisms or occlusion may resolve symptoms. A single injection of botulinum toxin A into the ipsilateral inferior oblique muscle can rapidly and safely resolve diplopic phase, temporary prisms or occlusion may resolve symptoms. A single injection of botulinum toxin A into the ipsilateral inferior oblique muscle can rapidly and safely resolve diplopia while waiting for the CN IV nucleus to recover. Otherwise, glasses with permanent prism correction or premature surgery can induce vertical diplopia, should the palsy recover.

Clinical Pearls

- Cases of true vertical diplopia are most commonly caused by CN IV palsy.
- If the presenting motility of a patient is a hyperelevation in one eye that increases on opposite gaze and ipsilateral head tilt, the cause is nearly always going to be CN IV palsy.
- Although the Parks-Bielschowsky three-step test is the cornerstone of cyclovertical strabismus diagnosis, it is not completely sensitive to diagnosing CN IV palsy. The complete three-step test fails to detect 30% of cases of CN IV palsy. Often, only two of three steps are positive in CN IV palsy. Thus, you do not need a complete three-step test to make the diagnosis.\(^3,12\)
- Myasthenia gravis and thyroid eye disease can mimic CN IV palsy and must always be considered.
- Bilateral CN IV palsies localizes damage to the anterior medullary velum, where both CN IV decussate at the level of the isthmus pons. Although the CN IV nucleus is in the midbrain, CN IV cross a bit lower.
- In children, nearly all cases of isolated fourth nerve palsy are either congenital or traumatic in nature. In adults, nearly all isolated, acquired fourth nerve palsies can be ascribed to trauma or vascular disease. Rarely is tumor or aneurysm a cause. The majority of fourth nerve palsies follow a benign course.
- When encountering isolated fourth nerve palsy, the clinician should delay prescribing permanent prisms for at least three months and surgery for 12 months in order to allow for the palsy to recover. Otherwise, glasses with permanent prism correction or premature surgery can induce vertical diplopia, should the palsy recover.

CRANIAL NERVE VI PALSY

Signs and Symptoms

A patient with cranial nerve (CN) VI palsy will present with horizontal, uncrossed diplopia that worsens at distance in the direction ipsilateral to the involved eye. The patient will have an abduction deficit in the involved eye. The patient will have a noncomitant esodeviation. Isolated CN VI palsy is not associated with visual acuity loss, visual field loss or other neurologic findings. Some degree of head or retro-orbital pain may be present, dependent upon the cause. The palsy may be acute, chronic or evolving over time.

Three distinct demographic groups are known to develop CN VI palsy. Most patients developing acute CN VI palsy are older (i.e., over age 50). This group often has a concurrent history of hypertension and/or diabetes, with peak incidence occurring in the seventh decade. Children are also prone to develop CN VI palsy. The cause may range from benign conditions, such as viral illness or trauma, to malignancy. The third group consists of young adults ages 20 to 50. This group is more likely to have neurologically complicated CN VI palsies involving other cranial nerves. In contrast to older adults, vascular disease such as diabetes and hypertension is uncommon in this age group with more serious conditions such as central nervous system (CNS) mass lesions and multiple sclerosis typically being found instead.

As various cancers have been associated with CN VI palsy, patients may present with a pre-existing history of malignant disease. However, CN VI palsy also might be the premonitory sign of cancer in some individuals. Carcinoma in particular has been associated with the development of CN VI palsy, either through direct invasion from the nasopharynx or metastasis to anatomic regions along the course of CN VI from the prostate or other sites. Other less common associations with CN VI palsy include herpes zoster, temporal arteritis, Lyme disease, sarcoidosis, pituitary tumor, aneurysm, cavernous sinus fistula and syndrome, inflammation, raised intracranial pressure from trauma or pseudotumor, and ophthalmoplegic migraine. There have been reports of CN VI palsy developing after intratireal injections of anti-VEGF ranibizumab and bevacizumab, though the mechanism of nerve paralysis is unknown. Pathophysiology

CN VI arises in the pons in close association with the facial nerve (CN VII), paramedian pontine reticular formation (PPRF), medial longitudinal fasciculus (MLF) and descending corticospinal fibers. Due to this arrangement, damage to the sixth nerve within the brain stem often produces a sixth nerve palsy along with a facial nerve palsy. Damage to the CN VI nucleus or the PPRF results in an ipsilateral gaze palsy. Simultaneous involvement of the MLF causes a superimposed inter-nuclear ophthalmoplegia.

A non-nuclear pontine CN VI palsy may also be associated with contralateral hemiparesis, with or without a CN VII palsy (Raymond’s syndrome vs. Millard-Gubler syndrome). These additional findings identify the location of damage to be the pons, where ischemic infarct, tumors and demyelination are common causes.

CN VI travels through the subarachnoid space, ascends the clivus and enters the cavernous sinus. In this subarachnoid space, CN VI can be damaged by metastatic lesions to the bony clivus. In addition, the sixth nerve may be compressed by the petroclival ligament in Dorell’s canal due to increased intracranial pressure from any cause. This can induce a unilateral or bilateral sixth nerve palsy (which is often intermittent) and papilledema. As the sixth nerve pareses over the petrous apex of the temporal bone, damage here can result in a sixth nerve palsy, facial pain and hearing loss. This occurs as a result of the spread of infection from the middle ear or mastoids (Gradenigo’s syndrome). Within the cavernous sinus, the sixth nerve is joined by the oculomotor sympathetic nerves, as well as CN III, IV, V1 and V2. Damage here can yield a sixth nerve palsy and Horner’s syndrome, loss of sensation in the forehead and cheek region, as well as possibly concurrent CN III and IV palsy.

The etiology may be aneurysm, meningioma, pituitary adenoma, inflammation or cavernous sinus fistula. CN VI palsy combined with ipsilateral Horner’s syndrome is highly localizing to the cavernous sinus; this is known

Pathophysiology

CN VI arises in the pons in close association with the facial nerve (CN VII), paramedian pontine reticular formation (PPRF), medial longitudinal fasciculus (MLF) and descending corticospinal fibers. Due to this arrangement,
The sixth nerve is also vulnerable to ischemic infarct from diabetes and hypertension. This remains a prime cause of isolated sixth nerve palsy in older patients.

While CN VI can be affected in many areas through its course from the pons to the orbit, a significant number of cases will have no conclusive etiology, despite extensive medical evaluation.\(^2\)\(^4\)\(^6\) As many as one-third of CN VI palsies will remain idiopathic.\(^6\)

Management

The first step in managing patients involves determining if the cause of the abduction deficit is, in fact, truly a CN VI palsy. Other causes of abduction deficit include myasthenia gravis and thyroid orbitopathy. The most important consideration in managing patients with true acute onset CN VI palsy involves identifying the causative factor in an efficient, cost-effective manner. Doing so involves understanding common causes for each patient profile and palsy. In one large, population-based study, the four most common causes of CN VI palsy were: (1) idiopathic, (2) hypertension alone, (3) coexistent diabetes and hypertension, and (4) trauma.\(^6\)

Details regarding presentation and medical history must be obtained, as well as a neurologic examination upon discovery. Each case of CN VI palsy should be classified as traumatic or non-traumatic, with non-traumatic cases subdivided as neurologically isolated or non-neurologically isolated.\(^6\) Additionally, patients should be ascribed to one of three groups: children, young adults or older adults.\(^6\)

A non-neurologically isolated sixth nerve palsy involving any of the above-mentioned neurological signs indicates a prompt need for MRI of the suspect area. Non-neurologically isolated CN VI palsies are commonly caused by cerebrovascular accidents involving the pons, aneurysm (typically within the cavernous sinus) or neoplasm.\(^6\) While neurologically complicated CN VI palsy is likely caused by a serious condition, such as neoplasm, isolated CN VI palsy actually has a very low risk (2% in one series) of being caused by a neoplasm.\(^6\)

In children, CN VI palsy can occur from a presumed viral cause or idiopathic intracranial hypertension. These cases have an excellent prognosis.\(^9\)\(^10\) However, nearly half of all CN VI palsies in children are due to neoplastic disease, notably pontine glioma.\(^5\)\(^11\)\(^13\)\(^39\) Thus, pediatric neurologic consultation and evaluation is urgent in this group, and the cause of the palsy shouldn’t be presumed to be benign.\(^11\)

In younger adults, CN VI palsy is likely to be caused by serious underlying disease. In this group, central nervous system (CNS) mass lesions and multiple sclerosis account for 33% and 24% of CN VI palsies, respectively.\(^13\) Idiopathic CN VI palsies account for 13% of cases, and vascular disease only 4%.\(^1\) It should be noted that CN VI palsy caused by CNS mass lesions in young adults typically produces other cranial neuropathies (non-isolated). Neuroimaging is mandatory in this group.

In adults over the age of 50 with an isolated sixth nerve palsy, a workup for ischemic vascular diseases such as diabetes and hypertension should be undertaken, as this is a common cause.\(^2\)\(^4\)\(^6\) If the patient is over the age of 60 years, then an erythrocyte sedimentation rate (ESR) and C-reactive protein should be ordered to rule out giant cell arteritis.\(^40\) In cases of isolated CN VI palsy in older adults with a history of diabetes or hypertension, neuroimaging and other extensive evaluation can be initially deferred, unless the palsy progresses, fails to improve after three months or other neurologic complications develop.

Ischemic vascular palsies typically progress over several days and may be no better at one week’s time, but progressive worsening over two weeks warrants neuroimaging, as this is not a feature of a vasculopathic cause.\(^6\) Thus, cases of potentially sinister origin can usually be suspected within two weeks of observation and then acted upon. A recent report has shown that in isolated CN VI palsy in patients with no vasculopathic risk factors or positive laboratory or clinical findings, neuroimaging can serve as a useful diagnostic tool to identify the exact cause, with a yield of nearly 50%.\(^41\)

Spontaneous recovery of CN VI palsy is common, especially if the etiology is either idiopathic, traumatic or microvascular.\(^3\)\(^4\)\(^6\)\(^13\)\(^42\) Resolution of CN VI palsy is typically complete within three to six months, although some cases may take longer. CN VI palsies associated with CNS mass lesions tend to have a worse prognosis for spontaneous recovery.\(^6\)\(^13\) In cases where complete recovery does not occur, alternate patching or Fresnel prism correction may alleviate diplopia and visual discomfort. More aggressive therapy in non-remitting cases includes medial rectus injection with botulinum A patient presents with right cranial nerve VI palsy.
Clinical Pearls

- The etiology of isolated CN VI palsy in the adult is underestimated in a significant number of cases, despite full diagnostic evaluation.
- While vasculogenic CN VI palsies can be expected to progress over several days, they will not worsen over a period of two or more weeks. Such a clinical course suggests alternate etiologies.
- Myasthenia gravis may mimic a sixth nerve palsy and should always be considered in the differential diagnosis, especially if the palsy takes on a variable course with exacerbations and remissions.
- A patient with horizontal and lateral rectus underaction can only be said to have an abduction deficit. Forced duction testing must be done. A positive forced duction test indicates a restrictive ophthalmoplegia while a negative result indicates a CN VI palsy or ocular myasthenia.
- The risk of acute isolated CN VI palsy in an older adult being caused by a neoplasm is low.
- Acute CN VI palsies in children are often harbingers of serious disease, such as cancer, and must be promptly investigated.
- Non-neurologically isolated CN VI palsies are often associated with CNS mass lesions and should be promptly evaluated.
- Acute CN VI palsy in a young adult is not commonly caused by microvascular infarct, but rather by more serious disease such as multiple sclerosis and CNS mass lesions and should be promptly investigated.

SAVE THE DATE!
June 8-11, 2017

DISNEY’S YACHT AND BEACH CLUB

The Yacht Club is one of the most conveniently located resorts on Disney’s property! It’s within walking distance of Epcot, Disney’s Boardwalk, the Swan, and the Dolphin hotels. It is also just a short boat ride away from the Disney’s Hollywood Studios. There is a very good reason why Disney’s Yacht Club remains one of the most popular resorts in Orlando.

Other 2017 NT&T Meetings!
• San Diego
• Philadelphia
• Nashville

Log on to...
www.reviewofoptometry.com/events
to stay informed!
Loteprednol etabonate has been shown to be embryotoxic (delayed teratogenic) and teratogenic (increased incidence of meningocele, abnormal left common carotid artery, and limb flexures) when administered orally to rabbits during organogenesis at a dose of 3 mg/kg/day (35 times the maximum daily clinical dose), a dose which caused no maternal toxicity. The no-observed-effect-level (NOEL) for these effects was 0.5 mg/kg/day (6 times the maximum daily clinical dose). Oral treatment of rats during organogenesis resulted in teratogenicity (absent innominate artery at ≥5 mg/kg/day doses, and cleft palate and umbilical hernia at ≥50 mg/kg/day) and embryotoxicity (increased post-implantation losses at 100 mg/kg/day and decreased fetal body weight and skeletal ossification with ≥50 mg/kg/day). Treatment of rats with 0.5 mg/kg/day (6 times the maximum clinical dose) during organogenesis did not result in any reproductive toxicity. Loteprednol etabonate was maternally toxic (significantly reduced body weight gain during treatment) when administered to pregnant rats during organogenesis at doses of ≥5 mg/kg/day.

Oral exposure of female rats to 50 mg/kg/day of loteprednol etabonate from the start of the fetal period through the end of lactation, a maternally toxic treatment regimen (significantly decreased body weight gain), gave rise to decreased growth and survival, and retarded development in the offspring during lactation; the NOEL for these effects was 5 mg/kg/day. Loteprednol etabonate had no effect on the duration of gestation or parturition when administered orally to pregnant rats at doses up to 50 mg/kg/day during the fetal period.

There are no adequate and well controlled studies in pregnant women. LOTEMAX should be used during pregnancy only if the potential benefit justifies the potential risk to the fetus.

Nursing Mothers
It is not known whether topical ophthalmic administration of corticosteroids could result in sufficient systemic absorption to produce detectable quantities in human milk. Systemic steroids appear in human milk and could suppress growth, interfere with endogenous corticosteroid production, or cause other untoward effects. Caution should be exercised when LOTEMAX is administered to a nursing woman.

Pediatric Use
Safety and effectiveness in pediatric patients have not been established.

Geriatric Use
No overall differences in safety and effectiveness have been observed between elderly and younger patients.

NONCLINICAL TOXICOLOGY
Carcinogenesis, Mutagenesis, Impairment Of Fertility
Long-term animal studies have not been conducted to evaluate the carcinogenic potential of loteprednol etabonate. Loteprednol etabonate was not genotoxic in vitro in the Ames test, the mouse lymphoma tk assay, or in a chromosome aberration test in human lymphocytes, or in vivo in the single dose mouse micronucleus assay. Treatment of male and female rats with up to 50 mg/kg/day and 25 mg/kg/day of loteprednol etabonate, respectively, (600 and 300 times the maximum clinical dose, respectively) prior to and during mating did not impair fertility in either gender.

PATIENT COUNSELING INFORMATION
Administration
Invert closed bottle and shake once to fill tip before instilling drops.

Risk of Contamination
Patients should be advised not to allow the dropper tip to touch any surface, as this may contaminate the gel.

Contact Lens Wear
Patients should be advised not to wear contact lenses when using LOTEMAX.

Risk of Secondary Infection
If pain develops, redness, itching or inflammation becomes aggravated, the patient should be advised to consult a physician.

Adverse Reactions
Adverse reactions associated with ophthalmic steroids include elevated intraocular pressure, which may be associated with infrequent optic nerve damage, visual acuity and field defects, posterior subcapsular cataract formation, delayed wound healing and secondary ocular infection from pathogens including herpes simplex, and perforation of the globe where there is thinning of the cornea or sclera.

The most common adverse drug reactions reported were anterior chamber inflammation (5%), eye pain (2%), and foreign body sensation (2%).

USES IN SPECIFIC POPULATIONS
Pregnancy
Teratogenic Effects: Pregnancy Category C.
Loteprednol etabonate has been shown to be embryotoxic (delayed ossification) and teratogenic (increased incidence of meningocele, abnormal left common carotid artery, and limb flexures) when administered orally to rabbits during organogenesis at a dose of 3 mg/kg/day (35 times the maximum daily clinical dose), a dose which caused no maternal toxicity. The no-observed-effect-level (NOEL) for these effects was 0.5 mg/kg/day (6 times the maximum daily clinical dose). Oral treatment of rats during organogenesis resulted in teratogenicity (absent innominate artery at ≥5 mg/kg/day doses, and cleft palate and umbilical hernia at ≥50 mg/kg/day) and embryotoxicity (increased post-implantation losses at 100 mg/kg/day and decreased fetal body weight and skeletal ossification with ≥50 mg/kg/day). Treatment of rats with 0.5 mg/kg/day (6 times the maximum clinical dose) during organogenesis did not result in any reproductive toxicity. Loteprednol etabonate was maternally toxic (significantly reduced body weight gain during treatment) when administered to pregnant rats during organogenesis at doses of ≥5 mg/kg/day.

Oral exposure of female rats to 50 mg/kg/day of loteprednol etabonate from the start of the fetal period through the end of lactation, a maternally toxic treatment regimen (significantly decreased body weight gain), gave rise to decreased growth and survival, and retarded development in the offspring during lactation; the NOEL for these effects was 5 mg/kg/day. Loteprednol etabonate had no effect on the duration of gestation or parturition when administered orally to pregnant rats at doses up to 50 mg/kg/day during the fetal period.

There are no adequate and well controlled studies in pregnant women. LOTEMAX should be used during pregnancy only if the potential benefit justifies the potential risk to the fetus.

Nursing Mothers
It is not known whether topical ophthalmic administration of corticosteroids could result in sufficient systemic absorption to produce detectable quantities in human milk. Systemic steroids appear in human milk and could suppress growth, interfere with endogenous corticosteroid production, or cause other untoward effects. Caution should be exercised when LOTEMAX is administered to a nursing woman.

Pediatric Use
Safety and effectiveness in pediatric patients have not been established.

Geriatric Use
No overall differences in safety and effectiveness have been observed between elderly and younger patients.

NONCLINICAL TOXICOLOGY
Carcinogenesis, Mutagenesis, Impairment Of Fertility
Long-term animal studies have not been conducted to evaluate the carcinogenic potential of loteprednol etabonate. Loteprednol etabonate was not genotoxic in vitro in the Ames test, the mouse lymphoma tk assay, or in a chromosome aberration test in human lymphocytes, or in vivo in the single dose mouse micronucleus assay. Treatment of male and female rats with up to 50 mg/kg/day and 25 mg/kg/day of loteprednol etabonate, respectively, (600 and 300 times the maximum clinical dose, respectively) prior to and during mating did not impair fertility in either gender.

PATIENT COUNSELING INFORMATION
Administration
Invert closed bottle and shake once to fill tip before instilling drops.

Risk of Contamination
Patients should be advised not to allow the dropper tip to touch any surface, as this may contaminate the gel.

Contact Lens Wear
Patients should be advised not to wear contact lenses when using LOTEMAX.

Risk of Secondary Infection
If pain develops, redness, itching or inflammation becomes aggravated, the patient should be advised to consult a physician.

Bausch & Lomb Incorporated
Tampa, Florida 33637 USA
US Patent No. 5,800,807
©Bausch & Lomb Incorporated
®/™ are trademarks of Bausch & Lomb Incorporated or its affiliates.

US/LGX/15/0042
Based on 9269100-9269200 Revised: 9/2012
Indication
LOTEMAX® GEL (loteprednol etabonate ophthalmic gel) 0.5% is indicated for the treatment of post-operative inflammation and pain following ocular surgery.

Important Safety Information about LOTEMAX® GEL
• LOTEMAX® GEL is contraindicated in most viral diseases of the cornea and conjunctiva including epithelial herpes simplex keratitis (dendritic keratitis), vaccinia, and varicella, and also in mycobacterial infection of the eye and fungal diseases of ocular structures.
• Prolonged use of corticosteroids may result in glaucoma with damage to the optic nerve, defects in visual acuity and fields of vision. If this product is used for 10 days or longer, IOP should be monitored.
• Use of corticosteroids may result in posterior subcapsular cataract formation.
• Use of steroids after cataract surgery may delay healing and increase the incidence of bleb formation and occurrence of perforations in those with diseases causing corneal and scleral thinning. The initial prescription and renewal of the medication order should be made by a physician only after examination of the patient with the aid of magnification, and where appropriate, fluorescein staining.
• Prolonged use of corticosteroids may suppress the host response and thus increase the hazard of secondary ocular infection. In acute purulent conditions, steroids may mask infection or enhance existing infection.
• Use of a corticosteroid medication in the treatment of patients with a history of herpes simplex requires great caution. Use of ocular steroids may prolong the course and exacerbate the severity of many viral infections of the eye (including herpes simplex).
• Fungal infections of the cornea are particularly prone to develop coincidentally with long-term local steroid application. Fungus invasion must be considered in any persistent corneal ulceration where a steroid has been used or is in use.
• Patients should not wear contact lenses when using LOTEMAX® GEL.
• The most common ocular adverse drug reactions reported were anterior chamber inflammation (5%), eye pain (2%) and foreign body sensation (2%).

Please see brief summary of Prescribing Information on adjacent page.

© 2015 Bausch & Lomb Incorporated. All rights reserved. Printed in USA. US/LGX/15/0041(1)