Ocular surface disease and dry eye disease are prevalent and pervasive diseases impacting the eye health of patients. The Dry Eye Workshop II (DEWS II) and other current research offer new insights on the characteristics and pathophysiology of Dry Eye Disease (DED), as well as best practices for treatment and management.

Therapeutic strategies that support the ocular surface, counteract hyperosmolarity and restore the tear film can aid in rehabilitating the eye’s structures. This knowledge offers an opportunity to introduce new ways to stabilize the tear film and improve patient comfort through rehydration, reduction of surface inflammation, and protection against future dessication.

An expanding pool of clinical data is supporting the benefits and sustained efficacy of therapies that include bioprotectants such as trehalose to protect cells against hyperosmolarity and promote exit of the vicious cycle of DED physiopathology.1

As such, lubricant eye drops enhanced with trehalose can provide patients with a new, successful way to rehabilitate the tear film in Ocular Surface Disease (OSD) and DED.

OSD & DED Prevalence & Impact

The 2017 Gallup Study of Dry Eye (conducted by Multi-sponsor Surveys, Inc.) revealed that 56% of adults report experiencing dry eyes frequently (14%) or occasionally (42%). Projected to the U.S. population, this translates to a staggering 140 million dry eye sufferers.2

From a pathophysiological standpoint, DED amplifies hyperosmolarity in an unforgiving cycle either directly or by inducing a cascade of inflammatory events, contributing to a loss of epithelial and goblet cells that decreases surface wettability and promotes early tear film breakup.3

In addition to the physical toll this disease takes on patients, it also has significant quality-of-life impacts. A number of studies have reported measurable negative effects of DED on daily-living tasks such as reading, carrying out professional tasks and driving.

Insights on Addressing the Problem

The Tear Film & Ocular Surface Society (TFOS) published the Dry Eye

What is Trehalose?

Trehalose—a bisacetal, non-reducing homodisaccharide in which two glucose units are linked together in a α-1,1-glycosidic linkage (α-d-glucopyranosyl-α-d-glucopyranoside; mycose, mushroom sugar)—is found abundantly in nature and in the biological world. The “extraordinary” properties of trehalose are responsible for this molecule’s bioprotective role.1

Anastatica hierochuntica, or white mustard flower, commonly called Rose of Jericho, is found in arid areas in the Middle East and the Sahara Desert. After the rainy season, the plant dries up, drops its leaves and curls its branches into a tight ball to hibernate. Once re-wetted in a subsequent rainy season, the ball uncurls and awakens from its dormant state, causing the capsular fruits to open and disperse seeds. The plant’s extraordinary ability to achieve this reawakening activity is attributed to the presence of trehalose, a disaccharide sugar involved in several mechanisms of cryptobiosis.

Clinical Support for Trehalose
Studies have shown that trehalose offers the following ocular surface benefits:
- Protection of human corneal epithelial cells from desiccation-induced death in culture. One trehalose-containing solution was found to be “effective and safe” for treatment of moderate to severe dry eye syndrome.
- Increased tear film thickness after instillation of one trehalose-containing drop up to 240 minutes compared with drops without trehalose.
- Better patient satisfaction and a therapeutic advancement in treatment of moderate to severe DED when comparing an eyedrop containing hyaluronic acid-trehalose with an HA-only eyedrop.
- Increased tear production at day 14 of treatment in a dry eye mouse model.
- Decreased eye surface apoptosis at day 14 of treatment in a dry eye mouse model.
- Improved appearance of ocular surface epithelial disorders through suppression of apoptosis and serum-like response upon topical application, as well as maintained corneal health.
- Suppressed inflammatory and proteolytic MMP-9 and HSP70 expression and keratinization, and restored ocular surface integrity in mice with dry eye damaged by a desiccative model.

How Trehalose Works
Trehalose maintains cell protein integrity during drying and rehydration, and it has been shown to protect against oxidative strain and stabilize protein function. The mechanism by which this member of the polyhydroxyl compound molecules works is by increasing compactness and stability in organisms, thereby aiding in the overcoming of structures, such as the cornea and conjunctiva, which may have suffered the sequelae of dry eye.

New research shows that recent attempts to counteract tear hyperosmolarity in DED have included bioprotectant features and small organic molecules used in many cell types throughout the natural world to restore cell volume and stabilize protein function. These molecules may directly protect cells against hyperosmolarity and promote exit from the vicious circle of DED physiopathology. There is an expanding pool of clinical data on the efficacy of DED therapies that include trehalose, whose unique properties have shown exceptional osmotic and bioprotectant abilities enabling them to act as a water replacement and prevent against desiccation stress.

Reawakening Dormant Desert Life

Anastatica hierochuntica, or white mustard flower, commonly called Rose of Jericho, is found in arid areas in the Middle East and the Sahara Desert. After the rainy season, the plant dries up, drops its leaves and curls its branches into a tight ball to hibernate. Once re-wetted in a subsequent rainy season, the ball uncurls and awakens from its dormant state, causing the capsular fruits to open and disperse seeds. The plant’s extraordinary ability to achieve this reawakening activity is attributed to the presence of trehalose, a disaccharide sugar involved in several mechanisms of cryptobiosis.

Trehalose & Eye Care

Trehalose Use in Dry Eye Disease

Trehalose has been shown to:
1. Rehydrate Tear Film
 - Retain moisture when drying out
 - Help increase tear film thickness
2. Protect Against Future Irritation
 - Help improve corneal staining
 - Help protect corneal epithelial cells from apoptosis after desiccation
3. Support Homeostasis of Tear Film
 - Restore osmotic balance to ocular surface
 - Help maintain homeostasis of corneal cells

Future of Treatment

New trehalose-containing solutions are becoming available to help eye care professionals offer patients an alternative treatment and management strategy. As one example, TheraTears® is launching a new lubricant eye drop, TheraTears® EXTRA Dry Eye Therapy, which contains trehalose as an excitant to enable the action of the solution’s active ingredient, Carboxymethylcellulose (CMC). Doctors are excited about the potential of lubricant eye drops enhanced with trehalose.

Elevated tear osmolarity, ocular surface stress and desiccation have long been challenges when treating dry eye patients. DEWS II—the most contemporary knowledge base available in the area of DED management—advocates for the use of artificial tears to retain moisture in and stabilize the tear film, as well as defend against desiccating conditions.

We are fortunate that a new lubricant eye drop enhanced with trehalose—TheraTears® Extra Dry Eye Therapy—offers the opportunity to enhance moisture retention in ocular surface cells and foster a rich healing environment for tear film rehabilitation. Research shows that the carboxymethylcellulose formula in TheraTears® Extra Dry Eye Therapy is effective in reestablishing normal osmolarity levels, and in improving signs and symptoms in dry eye patients.

In addition, trehalose as an excitant gives us a new way to counteract local environment stressors and support a return to equilibrium through its bioprotective and osmotic properties. This extraordinary disaccharide has the remarkable ability to shield against desiccating factors, protect corneal epithelial cells from apoptosis and rehydrate the tear film.

With TheraTears® Extra Dry Eye Therapy, we can potentially advance dry eye treatment while enhancing patient comfort and vision outcomes. The inclusion of the excitant trehalose in this therapy makes it a natural first-line choice for eye care professionals.

Dr. Brujic practices at Premier Vision Group in Bowling Green, Ohio.

Trehalose Current and Future Uses

- Major industries: Food, cosmetics, medicine
- An excitant in each of: Herceptin®, Avastin®, Lucentis® and Advate®
- Future applications: Solid dosage formulations, most notably in quick-dissolving tablets

The inclusion of the excitant trehalose in TheraTears® EXTRA Dry Eye Therapy makes it a natural first-line choice for eye care professionals.—Mile Brujic, OD, FAAO

Sponsored by TheraTears®

2. The 2017 Gallup Study of Dry Eye Sufferers (conducted by Multi-sponsor Surveys, Inc.).
HARNESS EXTRA POWER FROM A NATURAL WONDER

NEW TheraTears® Extra Dry Eye Therapy is enhanced with trehalose for superior relief

Trehalose is a natural disaccharide found in plants with moisture retention properties that help organisms survive in absence of water. In ophthalmic products, trehalose enhances active ingredients to help:

• Protect corneal cells from desiccation
• Restore osmotic balance to the ocular surface
• Maintain the homeostasis of corneal cells

-2017 DEWS II Report

Learn about our complete line of dry eye therapy products at theratears.com